Вам жить в XXI веке | страница 4
Нетрудно понять физический принцип использования лазеров для получения термоядерных микровзрывов. Наглядная сторона вопроса заключается в возможности фокусировать лазерный световой импульс на площадку очень малых размеров — порядка 100 мкм и меньше, что, в свою очередь, означает возможность вложить всю лазерную анергию в небольшие объемы вещества.
Высокая мощность лазеров обеспечивает мгновенный нагрев и сжатие малых порций термоядерного вещества. Этим и создаются условия для термоядерного микровзрыва. Возникающее под действием лазерного излучения давление в образующемся сгустке термоядерной плазмы достигает 1010 атм (всего в 10 раз меньше давления в недрах Солнца). Плотность горячей плазмы в момент, предшествующий термоядерному микровзрыву, может составлять 100 г/см3.
Для эффективной термоядерной вспышки необходима, по современным представлениям, энергия лазера — 1-10 МДж при длительности лазерного импульса 1 не. Сама по себе названная величина энергии невелика и соответствует сгоранию 25-250 г. бензина. Однако такая энергия, сосредоточенная в узких лучах и выделяющаяся в течение столь короткого времени, оказывается способной дать человечеству свет и тепло на практически неограниченный срок.
В последние годы мы являемся свидетелями весьма бурного прогресса в решении проблемы лазерного термоядерного синтеза. В СССР, США, Франции, Японии и других странах введены в действие и строятся многоканальные лазерные комплексы с энергией излучения 104 –105 Дж. На этих установках уже зафиксированы плотности термоядерной плазмы 10–30 г/см3, температуры в десятки миллионов градусов, а рекордное число образующихся нейтронов составляет 30 млрд. Сейчас задача состоят в том, чтобы достичь так называемого физического порога термоядерных реакций, то есть получить энергию, равную по величине энергии излучения лазера. Решение задачи означало бы возможность решающего перехода из области физических исследований в сферу инженерного конструирования. Для достижения этого порога выход нейтронов надо поднять до величины 1016 –1017 част. — имп. На первый взгляд может показаться, что мы еще очень далеки от цели. Однако физика термоядерного синтеза такова, что «дефицит» в 6–7 порядков по нейтронному выходу можно ликвидировать при увеличении массы, плотности и температуры мишени всего в несколько раз, для чего, как показывают расчеты, энергия падающего излучения должна быть многократно увеличена.