Как там у вас, на Бета-Лире? | страница 12
Чем больше, тем меньше
Хочу предложить читателям вместе со мной заняться поисками закономерностей, определяющих распространенность элементов в земной коре. Не может быть, чтобы мы в конце концов не выяснили, почему же на Земле кремния много, а золота мало. Случайно ли это или закономерно? Итак, ищем закон.
От чего отталкиваться, когда речь идет о химических элементах, известно: от периодической системы Менделеева. Вот и вывесим ее на стену так, чтобы она все время была перед глазами.
Начнем с первой группы менделеевской таблицы. Итак, щелочные металлы. Заглядывая в таблицу распространенности химических элементов, выпишем против названия каждого из щелочных металлов величины их содержания в земной коре (проценты, конечно, атомные).
Первого из щелочных металлов, лития, в земной коре маловато — 0,02 %. Да, по сравнению со следующими щелочными металлами, элементами-гигантами натрием (1,82 %) и калием (1,05 %), литий совсем бедный родственник. Впрочем, в семье щелочных металлов не один литий — голытьба: рубидия в земной коре еще меньше, чем лития (0,007 %), а цезия и вовсе самая малость (9∙10>5 %). Что же касается последнего из щелочных металлов, франция, то о его распространенности, которую и термином-то этим совестно назвать, уже говорилось. Закономерности как будто бы никакой нет. Сначала мало, затем много, а потом снова мало. Напоминает эрудицию школьника или студента до, во время и после экзамена. Позвольте, а если отбросить литий, то… То начинает проглядываться довольно определенная закономерность: содержание щелочного металла в земной коре убывает по мере повышения порядкового номера в периодической системе, или, что одно и то же, атомной массы.
Эту пока что еще довольно смутную догадку о связи распространенности элемента с его порядковым номером следует тут же проверить. Обратимся к соседней группе менделеевской системы. Металлы этой группы «сверху вниз» идут в таком порядке: магний, кальций, стронций, барий, радий. Выпишем в том же порядке колонку величин распространенности: 1,72 — 1,41 — 0,01 — 0,006 — 2∙10>–12. Комментарии? Вот их-то как раз и не нужно! И так ясно: распространенность химического элемента падает по мере увеличения порядкового номера. Позвольте, но ведь это почти закон. Нет, почему «почти»? Это самый настоящий закон! И к тому же (отбросим ненужную скромность!) — фундаментальный закон.
Похоже, что мы с вами молодцы: найти новый закон природы, да еще фундаментальный, — достижение, что ни говорите, не будничное.