Кибернетика, или Управление и связь в животном и машине | страница 72
Тем не менее в гиббсовой статистической механике применяется, хотя и неявно (Гиббс нигде не отдает себе в этом ясного отчета), разложение сложного события в бесконечную последовательность частных событий — первого, второго, третьего и т. д., — каждое из которых имеет известную вероятность; вероятность этого более широкого события находится затем как сумма вероятностей частных событий, образующих бесконечную последовательность. Таким образом, вероятности нельзя складывать во всех мыслимых случаях для получения полной вероятности, ибо сумма любого числа нулей равна нулю; но их можно складывать, коль скоро существует первый, второй, третий член и т. д., образующие последовательность событий, в которой каждый член имеет определенное место, задаваемое положительным целым числом.
Чтобы провести различие между этими двумя случаями, необходимы довольно тонкие изыскания о природе [c.101] множеств событий, а Гиббс был хотя и очень сильный, но не очень тонкий математик. Может ли класс быть бесконечным и в то же время существенно отличным по мощности от другого класса, например от класса натуральных чисел? Эту задачу решил в конце прошлого столетия Георг Кантор, и ответ был «да». Если мы рассмотрим все десятичные дроби, конечные и бесконечные, лежащие между нулем и единицей, то, как известно, их нельзя расположить в порядке «один, два, три…», хотя — удивительно — мы можем расположить так все конечные десятичные дроби. Поэтому проведение различия, требуемого в статистической механике Гиббса, не является само по себе невозможным. Услуга, оказанная Лебегом теории Гиббса, заключалась в доказательстве того, что неявные требования статистической механики относительно событий нулевой вероятности и сложения вероятностей событий действительно могут быть удовлетворены и что теория Гиббса не содержит противоречий.
Однако работа Лебега была непосредственно связана не с требованиями статистической механики, а с другой, как будто весьма далекой от нее, теорией — теорией тригонометрических рядов. Последняя восходит к физике XVIII в., изучавшей волны и колебания, и к спорному тогда вопросу об общности возможных движений линейной системы, полученных сложением ее простых колебаний, — колебаний, при которых течение времени лишь умножает отклонения системы от равновесия на положительный или отрицательный множитель, зависящий только от времени, но не от положения. Таким образом, одна функция выражается в виде суммы ряда. Коэффициенты этих рядов выражаются как средние произведения представляемой функции на данную весовую функцию. Вся теория основана на соотношениях между средним значением ряда и средними значениями отдельных членов. Заметим, что среднее значение величины, равной единице на интервале от нуля до