Кибернетика, или Управление и связь в животном и машине | страница 108



Мы переходим теперь к математической формулировке задачи о линейной обратной связи. Пусть структурная (не электрическая!) схема нашей системы имеет вид, как на рис. 2.

 

Рис. 2

Здесь входной сигнал двигателя, обозначенный через Y, равен разности между первоначальным входным сигналом Х и выходным сигналом умножителя, умножающего выходную мощность AY двигателя на коэффициент λ. Тогда

 

          (4.18)

и

 

,          (4.19)

откуда выходной сигнал двигателя

 

.          (4.20)

Следовательно, оператор, создаваемый всем механизмом обратной связи, равен A/(1+ λA). Он будет бесконечно большим тогда и только тогда, когда А= —1/λ. Кривая (4.17) для этого нового оператора будет иметь вид[c.170]

 

,          (4.21)

и ∞ будет внутренней точкой этой кривой тогда и только тогда, когда —1/λ является внутренней точкой первоначальной кривой (4.17)[149].

В этом случае обратная связь с коэффициентом λ, несомненно, произведет нечто катастрофическое, и эта катастрофа практически выразится в том, что система придет в неограниченные, нарастающие колебания. Если же точка —1/λ внешняя, то можно показать, что никаких неприятностей не будет, и обратная связь будет устойчивой. Случай, когда точка —1/λ лежит на эффективной границе, требует особого исследования. В большинстве случаев система может прийти при этом в колебание с амплитудой, которая не будет увеличиваться.

Пожалуй, полезно рассмотреть несколько операторов А и допустимые для них диапазоны обратной связи. Мы будем рассматривать не только операции (4.02), но и их пределы, предполагая, что к последним применимы те же рассуждения.

Если оператор А соответствует дифференциальному оператору, то A(z)=z; тогда при изменении y от —∞ до ∞ точно так же изменяется и А (y), и внутренние точки являются внутренними точками правой полуплоскости. Точка —1/λ всегда является внешней, и любая степень обратной связи возможна.

Если

 

,          (4.22)

то кривая (4.17) принимает следующий вид:

 

,          (4.23)

или

 

,
,          (4.24)

что можно также записать в виде

 

          (4.25)

[c.171]

Таким образом, наша кривая есть окружность с радиусом 1/2 и центром в точке (1/2, 0). Обход ее совершается по часовой стрелке, и внутренними будут те точки, которые обычно считаются внутренними. В этом случае обратная связь также неограниченна, ибо точка —1/λ всегда находится вне круга. Оператор a(t), соответствующий этому оператору А, будет равен

 

.          (4.26)

Положим теперь

 

,          (4.27)