По законам логики | страница 31
Эта идея связана главным образом с именем немецкого философа и математика Г. Лейбница. Вычисление суммы или разности чисел осуществляется на основе простых правил, принимающих во внимание только форму чисел, а не их смысл. Результат вычисления однозначно предопределяется этими не допускающими разночтения правилами, и его нельзя оспорить. Г. Лейбниц мечтал о времени, когда умозаключение будет преобразовано в вычисление. Когда это случится, споры, обычные между философами, станут так же невозможны, как невозможны они между вычислителями. Вместо спора они возьмут в руки перья и скажут: «Будем вычислять».
Идеи Г. Лейбница не оказали, однако, заметного влияния на его современников. Бурное развитие формальной логики началось только в прошлом веке. Оно было связано с применением в ней тех же методов, какие применялись всегда в математике.
Ирландский математик Д. Буль представил умозаключение как результат решения логических равенств, подобных математическим равенствам. Теория умозаключений приняла вид своеобразной алгебры. От обыкновенной алгебры она отличалась лишь отсутствием численных коэффициентов и степеней.
С работ немецкого математика и логика Г. Фреге начинается применение формальной логики для исследования оснований математики.
Г. Фреге был убежден, что «арифметика есть часть логики и не должна заимствовать ни у опыта, ни у созерцания никакого обоснования». Пытаясь свести математику к логике, он реконструировал саму логику. В 1878 году им была опубликована книга, само название которой достаточно красноречиво говорит о направлении этой реконструкции: «Исчисление понятий. Язык формул для чистого мышления, построенный по образцу арифметического».
Логическая теория Фреге — прообраз всех нынешних теорий правильного рассуждения.
Идея сведения всей чистой математики к логике была подхвачена затем английским логиком и философом Б. Расселом.
Последующее развитие логики показало, однако, неосуществимость этой грандиозной по своему замыслу попытки. Оно привело все же к сближению математики и логики и к широкому проникновению плодотворных методов первой во вторую.
Современную логику нередко называют математической, подчеркивая тем самым своеобразие новых ее методов в сравнении с использовавшимися ранее.
Одна из характерных черт этих методов — широкое использование разнообразных символов вместо слов и выражений обычного языка. Символы применял в ряде случаев еще Аристотель, а затем и все последующие логики. Однако теперь в использовании символики был сделан качественно новый шаг. В логике стали использоваться специально построенные языки, содержащие только специальные символы и не включающие ни одного слова обычного разговорного языка.