Обитаемые космические станции | страница 40



Контуры ракеты-носителя «Сатурн» в трехступенчатом варианте показаны на рис. 11.


Рис. 11. Трехступенчатая ракета «Сатурн»:
>1 — центральный бак; 2 — наружный бак; 3 — поворотный двигатель; 4 — неподвижный двигатель; 5 — тормозные посадочные двигатели; 6 — обтекатель

В конструктивном отношении наиболее интересна первая ступень, которая представляет собой самую сложную и дорогостоящую часть всей ракеты-носителя. Используемая во всех вариантах ракеты и имеющая специальную парашютную, роторную или парусную систему приземления, она может быть применена многократно. Эта система, обеспечивающая постепенное гашение скорости и плавную посадку, в парашютном варианте состоит из восьми тормозных пороховых двигателей нескольких парашютов и большого надувного баллона для посадки на воду.

По мнению конструкторов, возможность многократного применения первой ступени носителя существенно снизит общие затраты на запуск и выведение на орбиту космических аппаратов.

Конструктор ракет Браун, например, считает, что сохранение первой ступени для изучения узлов ракеты «Сатурн» даст больше данных, чем телеметрическая информация, полученная через 1000 каналов во время запуска.

Данные табл. 3 обращают наше внимание на то, что двигатели первой ступени работают на хорошо освоенном топливе (керосин плюс жидкий кислород), а в двигателях всех последующих ступеней в сочетании с кислородом используется более эффективное горючее — жидкий водород.

Почему же водородно-кислородные двигатели, применение которых явится важным шагом вперед в строительстве ЖРД, ставятся лишь на верхние ступени ракеты-носителя «Сатурн»?

Прежде всего это выгодно с энергетической точки зрения. Дело в том, что энергия газовой струи, истекающей из сопла ракетного двигателя, наиболее полно используется тогда, когда скорость истечения близка к скорости полета.

Если скорость истечения больше скорости полета, покидающая ракетный двигатель струя газов уносит с собой и рассеивает в пространстве некоторый избыток энергии. По-другому ведет себя выходящая из сопла струя, когда скорость истечения продуктов сгорания меньше скорости ракеты: струя как бы «волочится» за ракетой и «притормаживает» ее.

При запуске орбитального тела скорость ракеты-носителя увеличивается от нуля до первой космической, что при скорости истечения w = 2500 м/сек соответствует изменению отношения скорости движения к скорости истечения от нуля примерно до трех. Отсюда следует, что топлива, дающие большие скорости истечения (таким топливом и является водород, у которого w = 4000 м/сек), рациональнее всего применять на верхних ступенях, работающих при высоких скоростях полета. Первая же ступень большую часть времени работает при скоростях полета значительно меньших скорости истечения, и повышать их невыгодно из-за роста перегрузок и сопротивления атмосферы. Заметим, что применение водорода на верхних ступенях существенно снижает потребную тягу первой ступени. Так, при проектировании ракетной системы «Сатурн» было подсчитано, что использование для двигателей второй ступени не водорода, а керосина потребовало бы увеличения тяги первой ступени на 70 %. Если же керосин применить также и на третьей ступени, то тягу двигателей первой ступени пришлось бы утроить.