Солнечный луч | страница 60
Следовательно, линии Фраунгофера представляют собой не что иное, как спектры поглощения элементов, которые в виде газов и паров содержатся в атмосфере Солнца и звезд над излучающей поверхностью. Линии же гелия впервые были обнаружены в спектрах хромосферы и короны Солнца (отсюда «солнечное» имя этого элемента: в переводе с греческого гелиос — значит Солнце). Позже гелий был найден на Земле, в частности в атмосферном воздухе.
Итак, стало ясно, что атомы разных элементов испускают и поглощают энергию сообразно законам, одинаковым для всех условий. Линии атомных спектров дали возможность установить существование определенной закономерной зависимости между ними.
На рис. 10 показана серия спектральных линий самого простого химического элемента — водорода (так называемая серия Бальмера), относящихся к видимой области спектра. Расположение отдельных линий таково, что даже без математического анализа дает основание предположить существование какой-то скрытой закономерности. Анализ этой, а также других серий водорода (Лаймана и Пашена), расположенных соответственно в ультрафиолетовой и инфракрасной областях спектра, позволил вывести общую формулу частоты спектральных линий
где R — постоянный коэффициент; n и m — последовательные целые числа, имеющие значение m >= n+1; для серии Лаймана n = 1, для серии Бальмера n = 2 и для серии Пашена n = 3.
Спектры других элементов труднее поддавались анализу, но и для них были установлены соответствующие закономерности. Объяснить законы излучения и поглощения света веществом с помощью волновой теории не представлялось возможным. Зато в рамках квантовой теории эти явления получили естественное объяснение и их открытие способствовало торжеству квантовомеханических представлений.
Атомы каждого элемента могут иметь только определенные энергетические состояния, квантовые уровни, переходы между которыми совершаются благодаря излучению и поглощению энергии строго определенными порциями — квантами. Из многих квантов света, падающих на данный атом, поглощаются только те, которые по величине своей энергии соответствуют разности энергий его квантовых уровней. Поглотив такой квант, атом переходит на высший энергетический уровень. Но в этом состоянии он неустойчив, поэтому мгновенно совершается обратный процесс — высвечивание поглощенного кванта энергии и возвращение атома в исходное, невозбужденное, состояние. Перейти на более высокий энергетический уровень атом может также в результате нагрева. Высвечивание и в этом случае происходит по описанному выше закону. Низшее энергетическое состояние атомов, в котором газ не светится, является наиболее устойчивым, основным (рис. 11).