Солнечный луч | страница 15



В наше время зеленый покров Земли связывает и использует всего 0,3% падающего солнечного света. Однако в хороших условиях растения способны усваивать 5—10% энергии лучей Солнца, а в принципе возможно повышение «коэффициента полезного действия» растений и до 25—30%. Резервы и возможности земной жизни, следовательно, далеко еще не исчерпаны.

Пройдут годы. Человек будущего — гражданин коммунистического общества, высший продукт эволюции земной жизни и подлинный, рачительный хозяин земных богатств — найдет пути разумного использования океанских просторов и обширных пустынь, горных массивов и закованных во льды пространств Арктики и Антарктики для улавливания и использования энергии Солнца.

А когда станут реальностью далекие межпланетные и межзвездные экспедиции, он и на борту космического корабля создаст крохотный замкнутый мирок, в котором так же, как в большом земном мире, будет осуществляться круговорот веществ и энергии. Важнейшим и непременным звеном этой искусственной экологической системы, малой биосферы будут зеленые оранжереи. Зеленое растение войдет в просторы космоса как необходимый спутник человека, поставщик пищи и кислорода, заботливый санитар. Так, по мере развития и расцвета земной жизни изменяется, возрастает космическая роль растения, гениально понятая К. А. Тимирязевым.

Каков же этот великий и таинственный процесс, в ходе которого стремительный и неуловимый солнечный луч превращается в узника, и, гремя оковами — цепями углеродных атомов, приводит в движение гигантский маховик биосферы?

В самом общем виде фотосинтез, т. е. синтез при участии света, состоит в образовании из углекислоты воздуха и почвенной влаги сложных органических соединений углерода, кислорода и водорода. Благодаря использованию минеральных солей почвы в их состав включается также азот, фосфор, сера, железо, калий, натрий и другие элементы. В итоге возникают огромные молекулы белков, нуклеиновых кислот, углеводов, жиров, служащие, в свою очередь, строительным материалом клеток, кирпичиками здания жизни.

Со времен К. А. Тимирязева (70—80-е годы прошлого столетия) и почти до середины XX в. ученые были убеждены, что солнечная энергия, уловленная хлорофиллом, расходуется на расщепление молекул углекислоты: кислород выделяется в атмосферу, а углерод идет на синтез органических веществ. Суммарная формула процесса изображалась таким образом:

6С0>2 + 6Н>20 -> С>6Н>120>6 + 60>2.

Формулу С>6Н>120>8 имеют такие продукты фотосинтеза, как глюкоза, фруктоза и другие простейшие сахара. В них водород и кислород содержатся в том же соотношении 2 : 1, как в воде, поэтому эти вещества называют еще углеводами. Простейшие углеводы — моносахариды, теряя воду, могут образовывать более сложные соединения — дисахариды — сахарозу (тростниковый сахар), лактозу (молочный сахар), полисахариды — крахмал, целлюлозу и т. п. Применение метода меченых атомов внесло в эту схему существенную поправку. Оказалось, что сила, заключенная в солнечном луче, расходуется на разложение воды, а не двуокиси углерода, и что кислород атмосферы имеет, следовательно, не углекислотное, а водное происхождение. В уточненном виде основное уравнение фотосинтеза имеет следующий вид: