Лекции по физике 1 | страница 79



Скорость может иметь любую величину, однако больше шансов за то, что она окажется где-то в окрестности наиболее вероятного или ожидаемого значения

.

О кривой, показанной на фиг. 6.9, часто говорят в несколько ином смысле. Если мы возьмем газ, заключенный в каком-то сосуде (скажем, объемом 1 л), то окажется, что в нем имеется огромное количество молекул (N» 10>22). Поскольку р(v)Dv — вероятность того, что первая попавшаяся молекула будет лететь со скоростью, находящейся в интервале Dv, то, по определе­нию, ожидаемое число молекул со скоростью, находя­щейся в этом же интервале, будет равно

<DN>=Np(v) Dv. (6.21)

Поэтому Np (v) можно назвать «распределением молекул по скоростям». Площадь под кривой между двумя значениями ско­ростей v>lи v>2 [заштрихованная область на фиг. 6.9 для кривой Np(v)] представляет ожидаемое число молекул со скоростями между v>1 и v>2 . Но в газе, который содержит обычно огромное число молекул, отклонения от ожидаемого значения будут очень малы (порядка 1/ЦN), поэтому часто мы выбрасываем слово «ожидаемое» и говорим просто: «Число молекул со скоростями между v>1и v>2равно площади заштрихованного участка».Однако нужно все-таки помнить, что речь в таких случаях всегда идет о вероятном числе.

§ 5. Принцип неопределенности

Понятия вероятности оказались очень полезны при описа­нии поведения газа, состоящего из огромного количества мо­лекул. Немыслимо же в самом деле пытаться определить по­ложение и скорость каждой из 10>22 молекул! Когда впервые теория вероятности была применена к таким явлениям, то это рассматривалось просто как удобный способ работы в столь сложной обстановке. Однако теперь мы полагаем, что вероят­ность существенно необходима для описания различных атомных процессов. Согласно квантовой механике, этой математической теории малых частичек, при определении положения частички и ее скорости всегда существует некоторая неопределенность. В лучшем случае мы можем только сказать, что существует ка­кая-то вероятность того, что частица находится вблизи точки х.

Для описания местоположения частицы можно ввести плот­ность вероятности р>1 (х), так что p>1 (x) Dx будет вероятностью того, что частица находится где-то между х и х+Dx. Если положение частицы установлено достаточно хорошо, то пример­ный вид функции P>1(x) может иллюстрировать график, при­веденный на фиг. 6.10, а.


Фиг. 6.10. Плотности вероят­ности координаты, (а) и скорости (6) частицы.


Точно такое же положение и со ско­ростью частицы: она тоже неизвестна нам точно. С некоторой вероятностью р