Лекции по физике 7 | страница 64
Фиг. 34.4. Индуцированные электрические силы, действующие на электроны в атоме.
Среднее тангенциальное электрическое поле Е на этом контуре определяется выражением
т. е. возникает циркулирующее электрическое поле, напряженность которого равна
Индуцированное электрическое поле, действуя на атомный электрон, создает момент силы, равный -q>eEr, который должен быть равен скорости изменения момента количества движения dJ/dt:
Интегрируя теперь по времени, начиная с нулевого поля, мы находим, что изменение момента количества движения из-за включения поля будет равно
Это и есть тот дополнительный момент количества движения, который сообщается электрону за время включения поля.
Такой добавочный момент количества движения приводит к добавочному магнитному моменту, который благодаря тому, что это орбитальное движение, равен просто произведению -q>e/2mна момент количества движения. Наведенный диамагнитный момент
Знак минус (как можно убедиться непосредственно из закона Ленца) означает, что направление добавочного момента противоположно магнитному полю.
Мне бы хотелось написать выражение (34.16) несколько по-иному. Появившаяся у нас величина r>2 представляет собой расстояние от оси, проходящей через атом и параллельной полю В, так что если поле В направлено по оси z, то оно равно x>2+y>2. Если мы рассмотрим сферически симметричные атомы (или усредним по атомам, естественные оси которых могут располагаться во всех направлениях), то среднее от z>2+y>2 равно >2/>3 среднего квадрата истинного радиального расстояния от центра атома. Поэтому уравнение (34.16) обычно более удобно записывать в виде
Во всяком случае, мы нашли, что индуцированный атомный момент пропорционален магнитному полю В и противоположен ему по направлению. Это и есть диамагнетизм вещества. Именно этот магнитный эффект ответствен за малые силы, действующие на кусочек висмута в неоднородном магнитном поле.(Вы можете определить величину этой силы, воспользовавшись выражением для энергии наведенного момента в поле и результатами измерений изменения энергии при движении образца в область сильного поля или из нее.)
Но перед нами все еще стоит такая проблема: чему равен средний квадратичный радиус