Лекции по физике 7 | страница 60
Я попытался дать вам качественные объяснения диамагнетизма и парамагнетизма, однако хочу тут же внести поправку и сказать, что с точки зрения классической механики честным путем понять магнитные эффекты невозможно. Подобные магнитные эффекты — явления целиком квантовомеханические. Тем не менее привести некоторые «правдоподобные» классические рассуждения и дать вам представление о том, как здесь все происходит, все-таки небесполезно.
Попробуем встать на этот путь. Можно приводить разные физические аргументы и строить догадки о том, что происходит с веществом, однако все эти аргументы будут в той или иной степени «незаконными», так как в любом из магнитных явлений весьма существенную роль играет квантовая механика. С другой стороны, бывают такие системы, подобные плазме или скоплению множества свободных электронов, где электроны все же живут по законам классической механики. При таких обстоятельствах некоторые из теорем классического магнетизма будут очень полезны. Кроме того, классические рассуждения полезны еще и по историческим причинам: ведь пока люди еще не могли понять глубокий смысл и поведение магнитных материалов, они пользовались классическими аргументами. Так что классическая механика все же способна дать нам полезные сведения. И только если стремиться быть совсем честным, то надо отложить изучение магнетизма до тех пор, пока вы не пройдете квантовую механику.
А мне все-таки не хочется ждать так долго ради того, чтобы понять такую простую вещь, как диамагнетизм. Для целого ряда полуобъяснений происходящего можно ограничиться классической механикой, сознавая, однако, что наши доводы на самом деле нуждаются в квантовомеханическом подкреплении.
§ 2. Магнитные моменты и момент количества движения
Первая теорема, которую мы хотим доказать в классической механике, гласит: если электрон движется по круговой орбите (например, крутится вокруг ядра под действием центральных сил), то менаду магнитным моментом и моментом количества движения существует определенное соотношение. Обозначим через J момент количества движения, а через m — магнитный момент электрона на орбите. Величина момента количества движения равна произведению массы электрона на скорость и на радиус (фиг. 34.2). Он направлен перпендикулярно плоскости орбиты: