Лекции по физике 7 | страница 48
Электрический вектор в падающей волне может быть записан в виде
Поскольку вектор k перпендикулярен оси z, то
k·r=k>xx+k>yy. (33.12) Отраженную волну мы запишем как
так что ее частота равна w', волновое число k', а амплитуда Е'>0. (Мы, конечно, знаем, что частота и величина вектора k в отраженной волне те же, что и в падающей волне, но не хотим предполагать даже это. Пусть это все получится само собой из математического аппарата.) Наконец, запишем преломленную волну:
Вы знаете, что одно из уравнений Максвелла дает соотношение (33.9), так что для каждой из волн
Кроме того, если показатели преломления двух сред мы обозначим через n>1и n>2, то из уравнения (33.10) получится
Поскольку отраженная волна находится в том же материале, то
в то время как для преломленной волны
§ 3. Граничные условия
Все что мы делали до сих пор, было описанием трех волн; теперь нам предстоит выразить параметры отраженной и преломленной волн через параметры падающей. Как это сделать?
Три описанные нами волны удовлетворяют уравнениям Максвелла в однородном материале, но, кроме того, уравнения Максвелла должны удовлетворяться и на границе между двумя материалами. Так что нам нужно сейчас посмотреть — что же происходит на самой границе. Мы найдем, что уравнения Максвелла требуют, чтобы три волны определенным образом согласовывались друг с другом.
Вот один из примеров того, что мы имеем в виду. Составляющая по оси у электрического поля Е должна быть одинакова по обеим сторонам границы. Это требуется законом Фарадея:
СXE=дB/дt, (33.19)
в чем нетрудно убедиться. Рассмотрим для этого маленькую петлю Г, которая с обеих сторон охватывает границу (фиг. 33.4).
Фиг. 33.4. Граничное условие E>y>2=E>y>1, полученное из равенства
Согласно уравнению (33.19), криволинейный интеграл от Е по петле Г равен скорости изменения потока В через эту петлю:
Вообразите теперь, что прямоугольник очень узок, так что он замыкается в бесконечно малой области. Если при этом поле В остается конечным (нет никаких причин ему быть бесконечным!), то поток через эту область будет равен нулю. Таким образом, контурный интеграл от Е должен быть нулем. Если y-компоненты поля на двух сторонах границы равны Е>y>1и Е>y>2, а длина прямоугольника равна l, то мы получаем
E>y>1l-E>y>2l=0
или
Е>у1=Е>у>2, (33.20)
как мы и ожидали. Это условие дает нам одно соотношение между полями в трех волнах.
Процедура нахождения следствий уравнений Максвелла на границе называется «определением граничных условий». Обычно она заключается в нахождении стольких уравнений типа (33.20), сколько возможно, и выполняется она с помощью рассмотрении маленьких прямоугольников, подобных Г на фиг. 33.4, или маленьких гауссовых поверхностей, охватывающих границу с двух сторон. Хотя это совершенно правильный способ рассуждений, он создает впечатление, что в различных физических задачах с границами нужно обращаться по-разному.