Кванты и музы | страница 15



Психологически это был трудный поворот. Учёные, не успев привыкнуть к тому, что вместо непрерывных процессов, подчиняющихся законам классической физики, в природе царствует дискретность, прерывистость, должны были начинать новую жизнь: привыкать к мысли, что в микромире уже нельзя пользоваться формулами классической физики. Нужно выявлять квантовые законы и применять их для исследования микромира.

Недоумение, с которым встретили физики выход из тупика, указанный Бором, перешло в триумфальное шествие, когда Бор, а за ним теоретики Вильсон и Зоммерфельд начали на основе модели Бора рассчитывать спектры атома водорода. Модель позволяла наглядно представить и возникновение Периодического закона, открытого Менделеевым. Однако восторг сменился разочарованием, когда выяснились некоторые тонкие расхождения между расчётными величинами и наблюдаемыми спектрами водорода, а затем оказалось, что модель не позволяет рассчитать спектры более сложных атомов, даже второго по сложности атома — гелия. Возникла горькая поговорка: «Атом Бора это не атом бора, а атом водорода».

Так трагической неудачей закончился период величайших успехов физики начала прошлого века.

Тогда существовала надежда, что удастся построить наглядную и непротиворечивую картину мира, основанную на трёх простейших элементах: протонах — ядрах атома водорода, из которых образуются все ядра, электронах — ответственных за все электрические и химические явления, и фотонах — объясняющих все оптические явления и их связь со строением атома. Все эти надежды рухнули.

После перерыва, вызванного Первой мировой войной, физики вновь принялись за работу. Впрочем, физики старшего поколения, не призванные в армию, и в эти годы продолжали искать порванные нити старых и новых теорий.

В эти годы Эйнштейн трудился над обобщением теории относительности, желая найти в ней место для неравномерных движений, например для падения тел в поле тяготения и для вращательных движений. В 1916 году он достиг решающих успехов, опубликовав ряд работ, развивавших общую теорию относительности и позволявших охватить едиными формулами простые движения, поле тяготения и центробежные силы. Этим Эйнштейн заложил основу несбывшейся мечты всей его дальнейшей жизни — мечты о единой теории, описывающей все известные и ещё не открытые поля.

Одновременно Эйнштейн стремился понять, как можно примирить существование фотонов (частиц света) с такими явлениями, как дифракция и интерференция, свидетельствующими о том, что свет обладает несомненными волновыми свойствами.