Технология редакционно-издательского процесса | страница 74
Если в выражении А = В/ СХ косую черту заменить знаком деле–ния (две точки), это тоже нехорошо, ибо С и Xбудут набраны без пробела и многими будут приняты за произведение (А = В : СХ).
Как и было условлено, в трудоемкость формул (экономич–ность) будем включать трудоемкость не только набора, но и редак–тирования, перепечатки формульного оригинала, считки. Спра–ведливости ради сюда следовало бы включить и трудоемкость проверки формул автором в верстке, когда ему приходится порой часами проверять формулы, ставшие неузнаваемыми после редак–тирования. Очевидно, например, насколько труднее проверить вторую формулу, чем первую:
до преобразования
после преобразования α = 4(A/C):[(1+A/C)>2+B>2/C(ω/ω>r−ω>r /ω)>2].
Конечно, то, что трудоемкость формул обычно сводится лишь к стоимости набора, в какой-то мере понятно: стоимость набора – это количественный и внешний показатель подготовки издатель–ского оригинала. Остальные показатели трудоемкости не подсчи-тываются и являются для издательства внутренними.
Чтобы сделать трудоемкость редактирования минимальной, надо добиться того, чтобы авторы представляли материал, в кото–ром соблюдены следующие требования:
– формулы вписаны от руки печатными буквами, аккуратно и ясно (если автор не смог осуществить компьютерный набор);
– знаки деления в сложных формулах имеют вид горизонталь–ной черты. Такие формулы легко проверить, проанализировать и принять решение, согласовав, естественно, с автором целесо–образность придания формуле более компактного вида;
– формулы размечены;
– сделаны необходимые уточнения на полях («е» – не «эль» и т.д.);
– число букв и знаков, требующих дополнительного разъясне–ния на полях, сведено в формулах к минимуму.
Много лишней бумаги уходит на подробные представления математических действий и выкладок. В таких случаях число фор–мул можно сократить – далеко не всегда необходимо приводить все промежуточные преобразования, если они элементарны по ха–рактеру. Например, вместо целого ряда преобразований формулы
вполне достаточно написать
Экономии бумаги можно достичь и группировкой формул. Так, формулы
σ>x= λΔ + 2Ge>x;
σ>y= λΔ + 2Ge>y;
σ>z= λΔ + 2Ge>z;
τy>z= σγy>z;
τx>z= σγx>z;
τx>y= σγx>y;
возможно сгруппировать более компактно:
σ>x= λΔ + 2Ge>x; τyz = σγ>yz;
σ>y= λΔ + 2Ge>y; τxz = σγ>xz;
σ>z= λΔ + 2Ge>z; τxy = σγ>xy.
Пунктуация в тексте с формулами еще недостаточно система–тизирована, так как формулы нередко рассматриваются в качестве независимой части, искусственно вкрапленной в предложение. Бессистемность, разнобой легко устранить, если формулы и от–дельные символы рассматривать как члены предложения. С такой позиции каждую формулу нужно расценивать как синтаксиче–скую единицу, входящую в предложение, и соответственно рас–ставлять знаки препинания.