Межпланетные путешествия. Полёты в мировое пространство и достижение небесных тел | страница 47



Исходя из этого, Эйнштейн развивает стройную теорию тяготения, принципиально отличную от всех прежде предлагавшихся и уже получившую частичное подтверждение согласием ее неожиданных следствий с наблюдениями.

К сожалению, эта теория не может быть общепонятно изложена.

К главе IV

3. Поглощение тяготения

Вопрос о существовании такого вещества, которое было бы вполне или отчасти непроницаемо для тяготения (т. е. обладало бы свойствами фантастического „кеворита", упоминаемого в романе Уэльса), служил неоднократно предметом научного рассмотрения. До самого последнего времени опыты, производившиеся с целью обнаружить хотя бы следы подробного поглощения тяготения, не давали положительных результатов. Лишь в 1920 г. удалось[34], повидимому, получить результат, который указывает на некоторое ослабление силы тяготения, при действии ее через тела большой плотности (ртуть, свинец). При этих опытах свинцовый шар, весом около 1300 килогр., окружался 100 килогр. ртути так, чтобы она не касалась шара: при этом наблюдалось уменьшение веса свинцового шара на 2 миллионные доли грамма.

В другой серии опытов того же ученого тяготение действовало через толстый слой свинца (именно, через призму весом 600 пудов, при этом вес шара уменьшался на 2 миллионных грамма).

Однако, интересные данные этих опытов далеко нельзя считать решающими; они нуждаются в тщательной проверке новыми опытами, с целью установить, действительно ли уменьшение веса в данном случае обусловлено поглощением тяготения, а не вызывается какими-либо другими причинами.

К главе VII

4. Падение в мировом пространстве

Полет пушечного ядра Жюля Верна на Луну можно рассматривать как случай падения тела в мировом пространстве под влиянием силы тяготения. Поэтому, прежде чем рассматривать условия его полета, полезно рассмотреть такую, например, задачу из области небесной механики:

Во сколько времени упал бы на Солнце земной шар, если бы по какой-либо причине прекратилось его движение по орбите?

Задачи подобного рода легко разрешаются на основании третьего закона Кеплера: квадраты времен обращения (планет и комет) относятся как кубы их средних расстояний от Солнца. В нашем случае мы можем земной шар, летящий прямо к Солнцу, уподобить воображаемой комете, движущейся по сильно вытянутому и сжатому эллипсу, крайние точки которого расположены: одна — близ земной орбиты, другая — в центре Солнца. Среднее расстояние такой кометы от Солнца, очевидно, вдвое меньше среднего расстояния Земли. Вычислим, каков должен был бы быть период обращения этой воображаемой кометы. Составим на основании третьего закона Кеплера, пропорцию: