Межпланетные путешествия. Полёты в мировое пространство и достижение небесных тел | страница 13
Теперь становится очевидной безнадежность фантастического проекта Уэльса. Романист не подозревал, что столь простое на вид действие, как перенесение тела за экран, непроницаемый для тяготения — представляет собою неимоверно трудную механическую задачу: ведь для этого надо сделать такое же усилие, как и для того, чтобы удалить тело с Земли в бесконечность!
Уэльс упустил из виду, что задвинуть заслонки его снаряда вовсе не так легко и просто, как захлопнуть дверцу кареты: в тот краткий миг, когда закрывается последняя заслонка и пассажиры отделяются от весомого мира, — должна быть выполнена работа, равная работе перенесения полного веса пассажиров в бесконечность. А так как два человека весят свыше 100 килограммов, то, значит, задвигая заслонки снаряда, герои романа должны совершить работу ни мало, ни много — в 600 миллионов килограммометров! Это почти так же легко выполнить, как втащить броненосец на купол Йсаакиевского собора, и притом в течение всего нескольких секунд. Будь мы были подобными богатырями, мы могли бы без всякого, кеворита" буквально прыгнуть с Земли на Луну… Не приходилось бы долго размышлять над проблемой межпланетных путешествий.
Безвыходный круг
Итак, идея странствовать во вселенной под защитою вещества, непроницаемого для тяготения, приводит нас к тому, что в логике называется „безвыходным кругом". Чтобы воспользоваться таким веществом, необходимо преодолеть притяжение Земли — т.-е. выполнить именно то, ради чего и придуман экран тяготения. Следовательно, вещество, непроницаемое для тяготения, бесполезно для небесных путешествий.
V
Можно ли ослабить земную тяжесть?
Если несбыточны надежды укрыться от силы тяжести, то, быть-может, существуют способы хотя бы ослабить тяжесть на земной поверхности?
Увеличить объем Земли
Казалось бы, простой и ясный закон Ньютона не допускает подобной возможности даже в теории: сила притяжения зависит ведь от массы земного шара, которую уменьшить мы не в состоянии. Однако, это не так. Речь идет о напряжении тяжести на поверхности нашей планеты, а оно, как известно, зависит не от одной лишь массы, но также и от расстояния до центра земного шара, т.-е. от величины земного радиуса. Если бы мы могли разрыхлить земной шар настолько, чтобы, увеличившись в объеме, он имел радиус, например, вдвое больше, чем теперь, то напряжение тяжести на поверхности такого шара стало бы вчетверо меньше. В самом деле: находясь на поверхности Земли, мы были бы вдвое дальше от притягивающего центра (шарообразные тела притягивают так, как будто вся их масса сосредоточена в центре). Выгода от подобного грандиозного переустройства обитаемой нами планеты получилась бы еще и та, что поверхность земного шара увеличилась бы при этом в четыре раза. Людям жилось бы на Земле буквально вчетверо свободнее и вчетверо легче…