Складка. Лейбниц и барокко | страница 52



здесь-то достаточное основание и становится принципом. Всякое реальное есть субъект, чей предикат является свойством, стоящим в серии других свойств, поскольку множество предикатов есть отношение между пределами этих серий (следует избегать смешения предела с субъектом).

Мы должны отметить одновременно и нередуцируемость этой новой области с точки зрения познания, и, к тому же, ее в двух смыслах переходную роль с точки зрения самого познания. С одной стороны, реквизиты, по сути дела, не являются предположительно интуитивными сущностями первого типа бесконечного, как и теорематическими сущностями второго типа бесконечного, содержащимися в определениях и доказательствах. Это проблематичные сущности, соответствующие третьему типу бесконечного. Математика Лейбница непрестанно превращает проблемы в нередуцируемую инстанцию, добавляющуюся к последовательностям определений; без нее определения, возможно, не могли бы выстраиваться в последовательности: если математические буквенные символы можно комбинировать, то объясняется это тем, что сначала мы ставим проблемы и уже потом берем на себя доказательство теорем.>14 В этом смысле хотя аксиомы и касаются проблем, они все же не поддаются доказа-

{13}

О текстуре золота или о связи между его свойствами, «Новые опыты», II, гл. 31,1, III, гл. 3, § 19.

>14«Новые опыты», IV, гл. 2, § 7: о категории проблемы.

{83}

тельствам. Если Характерное и отличается от Комбинаторного, то именно потому, что оно представляет собой подлинное исчисление проблем или пределов. Реквизиты и аксиомы — это условия, но не познания из опыта, в духе Канта — когда они становятся еще и универсальными, а постановки проблемы, которой соответствует некая вещь, взятая в том или ином конкретном случае, — притом, что случаи связаны со значениями переменных в сериях. И представляется, что мы привязаны и едва ли не прикованы к реквизитам: даже определяющие, которые нам удается получить, например, в арифметике или в геометрии, имеют значение не иначе, как по аналогии, и по сути являются внутренними свойствами какой-либо предполагаемой области (таковы первые числа, по которым находят конвергентную серию). Пусть теоремы и доказательства как последовательности определений притязают на силлогистическую форму — мы оперируем «энтимемами», которые только выступают в роли силлогизмов, а сами действуют посредством «внутренних пропусков», эллипсисов и проблематичных сокращений.