Странности цифр и чисел | страница 9
фи>2 = фи + 1,
то есть 1,618 х 1,618 * 2,618 = = 1,618 + 1.
Древние египтяне и греки обходились без помощи калькуляторов, которые дают число фи с бесчисленным множеством десятичных разрядов, и применяли его свойства.
Древние математики обнаружили, что «золотое сечение» можно получить при помощи обычной геометрии и, следовательно, применять его в любом масштабе, какой только пожелаешь, даже для строительства великих пирамид.
Вот один из способов, как это можно сделать. Нарисуем равнобедренный треугольник внутри окружности таким образом, чтобы вершины его углов лежали на линии окружности. Проведем от верхнего угла медиану, которая разделит его основание на две равные части. Теперь нарисуем линию, соединяющую середины равных сторон треугольника и пересекающую линию окружности. Точка пересечения медианы и этой линии (центр) будет вершиной прямого угла первичного «золотого треугольника», где катеты (а также отрезки от центра до середины стороны треугольника и до линии окружности) будут иметь отношение, равное фи.
Число фи выражается соотношениями между окружностью и другими правильными геометрическими фигурами, и об этом было известно древним архитекторам, которые искали идеальные пропорции для своих сооружений. Каждый, кто посещал пирамиды в Египте или Пантеон в Афинах, согласится, что они впечатляют.
Леонардо Фибоначчи проводил исследования на кроликах, а получилось так, что его имя вписалось в историю. Он хотел вычислить скорость увеличения их поголовья, начиная с двух молодых особей разного пола. Он начертил таблицу роста поголовья, в основе которой находилась пара одномесячного возраста, месяц спустя родилась еще одна разнополая пара, дальше все происходило в таком же порядке. Если вы попытаетесь сами произвести подобный расчет, начиная с 0, и запишете количество пар кроликов в конце каждого месяца (в данном расчете мы не учитываем возможные случаи смерти), у вас получится ряд чисел: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89. Эта числовая последовательность называется «ряд Фибоначчи» и продолжается до бесконечности. Формула очень проста: каждое число является суммой двух предшествующих чисел. Более глубокий взгляд на отношения между числами в ряду Фибоначчи показывает: чем дальше мы продвигаемся вперед по шкале чисел, тем ближе и ближе к «золотому числу» соотношение каждого числа к последующему.
Поэтому числа Фибоначчи тесно связаны с фи, «золотым сечением», и это отражается далеко за пределами созданного человеком мира математики и геометрии.