Эволюция физики | страница 73



Но имеется еще одно существенное различие между механическими законами и законами поля Максвелла. Сравнение законов тяготения Ньютона и законов поля Максвелла подчеркнет некоторые характерные черты, выраженные этими уравнениями.

С помощью законов Ньютона мы можем вывести движение Земли, зная силу, действующую между Солнцем и Землей. Эти законы связывают движение Земли с действием удаленного Солнца. И Земля, и Солнце, хотя они и далеки друг от друга, оба принимают участие в игре сил.

В теории Максвелла нет вещественных участников действия. Математические уравнения этой теории выражают законы, управляющие электромагнитным полем. Они не связывают, как это имеет место в законах Ньютона, два далеко разделенных события, они не связывают события здесь с условиями там. Поле здесь и теперь зависит от поля в непосредственном соседстве в момент, только что протекший. Уравнения позволяют нам предвидеть, чтоґ случится немного дальше в пространстве и немного позднее во времени, если мы знаем, чтоґ происходит здесь и теперь. Они позволяют нам увеличивать наши знания поля малыми шагами. Мы можем вывести то, что происходит здесь, из того, что происходит вдали, путем суммирования этих очень малых шагов. В теории же Ньютона, наоборот, допустимы только большие шаги, связывающие отдаленные события. Опыты Эрстеда и Фарадея можно рассмотреть с точки зрения теории Максвелла, но только суммируя малые шаги, каждый из которых управляется уравнениями Максвелла.

Изучение уравнений Максвелла с математической стороны показывает, что из них можно сделать новые и действительно неожиданные заключения, а всю теорию можно испытать на гораздо более высоком уровне, потому что теоретические следствия теперь имеют количественный характер и обосновываются всей цепью логических аргументов.

Представим себе опять идеализированный опыт. Небольшая электрически заряженная сфера под влиянием внешних сил вынуждена быстро и ритмично колебаться, подобно маятнику. Как, опираясь на знания об изменениях поля, которые уже есть у нас, будем мы описывать на языке поля всё, что при этом происходит?

Колебания заряда создает изменяющееся электрическое поле. Оно всегда сопровождается изменяющимся магнитным полем. Если поблизости расположен проводник, образующий замкнутую цепь, то изменяющееся магнитное поле будет сопровождаться электрическим током в цепи. Все это является лишь повторением известных фактов, но изучение уравнений Максвелла дает гораздо более глубокое проникновение в проблему колебания электрического заряда. С помощью математического вывода из уравнений Максвелла мы можем установить характер поля, окружающего колеблющийся заряд, его структуру вблизи и вдали от источника и его изменение со временем. Результатом такого вывода является представление об