Шаги за горизонт | страница 95
Прежде всего поставим вопрос о том, какие взаимосвязи существуют между основательным изучением физики элементарных частиц и другими отраслями нашей науки. Эксперименты двух последних десятилетий привели к созданию довольно-таки непротиворечивой картины мира элементарных частиц. Когда на большом ускорителе сталкиваются две частицы очень высоких энергий, результат их столкновения не следовало бы называть делением столкнувшихся частиц. В действительности тут происходит рождение новых (большей частью нестабильных) частиц из кинетической энергии сталкивающихся объектов согласно законам специальной теории относительности. Энергия превращается в материю, принимая форму частиц..
Спектр частиц, которые здесь могут возникнуть, столь же сложен, как спектр стационарных состояний атомов, молекул или ядер. Частицы, точно так же, как атомы или молекулы, характеризуются квантовыми числами, иначе говоря, характеризуются своей симметрией, своим поведением при фундаментальных преобразованиях. Поэтому область физики частиц уместно сравнить с областью химических реакций в газах. И там, и здесь требуется знание об очень многих отдельных объектах — в одном случае о молекулах, в другом о частицах — и о том, какая реакция происходит при их столкновении. За последние 20 лет собрано множество данных об элементарных частицах; попробуем осмыслить значимость этих данных для других областей науки.
Начнем с теоретической стороны картины. Как методы, так и результаты здесь потенциально важны для других научных областей. Методы анализа процессов, наблюдаемых в физике частиц, аналогичны методам, применяемым при изучении реакций между атомами, молекулами или электронами, скажем, в квантовой химии. Методы эти принадлежат к теоретической области, которую называют физикой многих тел, и каждый успех, достигаемый в физике частиц, может оказаться полезным в данной области, например при изучении химических реакций или при исследовании поведения твердых тел в возбужденных состояниях. И наоборот: эти возбужденные состояния, именуемые поляронами или экситонами, являют в нерелятивистской теории поля наилучший аналог процессов, которыми занята физика частиц. Между двумя этими областями происходит поэтому плодотворный обмен идеями[52].
Что касается результатов, то важнейших приложений наших познаний физики частиц следует, по-видимому, ожидать в области ядерной физики. Силы взаимодействия между протоном и нейтроном как составными частями ядра пока еще недостаточно изучены. Существуют феноменологические описания этих сил, в какой-то мере соответствующие расчетам стационарных состояний ядер; но уже определить силы взаимодействия между тремя телами удается лишь с гораздо меньшей точностью. Эти силы, по-видимому, в значительной степени возникают вследствие обмена частицами, прежде всего бозонами (