Шаги за горизонт | страница 78
Значение этого шага в философском мышлении вряд ли можно переоценить. Его можно считать бесспорным началом математического естествознания, и тем самым на него можно возложить также и ответственность за позднейшие технические применения, изменившие облик всего мира. Вместе с этим шагом впервые устанавливается и значение слова «понимание». Среди всех возможных форм понимания одна, а именно принятая в математике, избирается в качестве «подлинной» формы понимания. Хотя любой язык, любое искусство, любая поэзия несут с собой то или иное понимание, к истинному пониманию, говорит платоновская философия, можно прийти, только применяя точный, логически замкнутый язык, поддающийся настолько строгой формализации, что возникает возможность строгого доказательства как единственного пути к истинному пониманию. Легко вообразить, какое сильное впечатление произвела на греческую философию убедительность логических и математических аргументов. Она была просто подавлена силой этой убедительности но капитулировала она, пожалуй, слишком рано.
2. Ответ современной науки на древние вопросы
Важнейшее различие между современным естествознанием и античной натурфилософией заключается в характере применяемых ими методов. Если в античной философии достаточно было обыденного знания природных явлений, чтобы делать заключения из основополагающего принципа, характерная особенность современной науки состоит в постановке экспериментов, т. е. конкретных вопросов природе, ответы на которые должны дать информацию о закономерностях. Следствием этого различия в методах является также и различие в самом воззрении на природу. Внимание сосредоточивается не столько на основополагающих законах, сколько на частных закономерностях. Естествознание развивается, так сказать, с другого конца, начиная не с общих законов, а с отдельных групп явлений, в которых природа уже ответила на экспериментально поставленные вопросы. С того времени, как Галилей, чтобы изучить законы падения, бросал, как рассказывает легенда, камни с «падающей» башни в Пизе, наука занималась конкретным анализом самых различных явлений — падением камней, движением Луны вокруг Земли, волнами на воде, преломлением световых лучей в призме и т. д. Даже после того, как Исаак Ньютон в своем главном произведении «Principia mathematica» объяснил на основании единого закона разнообразнейшие механические процессы, внимание было направлено на те частные следствия, которые подлежали выведению из основополагающего математического принципа. Правильность выведенного таким путем частного результата, т. е. его согласование с опытом, считалась решающим критерием в пользу правильности теории.