Шаги за горизонт | страница 121
И классическая физика, и квантовая механика дают нам ряд примеров такого понимания. Представим себе, например, спектр упругих колебаний стальной пластины. Если мы не хотим удовлетвориться качественным пониманием, то мы будем исходить из того, что стальная пластина характеризуется определенными свойствами упругости, поддающимися математическому представлению. Коль скоро это удалось, остается лишь добавить краевые условия, то есть указать дополнительно, имеет ли пластина круглую или квадратную форму, зажата она или нет, и отсюда по крайней мере в принципе можно рассчитать спектр упругих, или акустических, колебаний. Правда, степень сложности задачи едва ли позволит в точности рассчитать все колебания, но по крайней мере колебания низшей частоты с минимальным количеством пучностей вычислить удается.
Итак, для количественного понимания нужны два элемента: математически точно сформулированное знание динамического поведения пластины и краевые условия, которые можно считать «контингентными», то есть определяющимися более конкретными обстоятельствами данного случая; в самом деле, стальная пластина могла бы быть вырезана и иначе. То же самое и с электродинамическими колебаниями полого резонатора. Уравнения Максвелла определяют его динамическое поведение, а форма пространственной полости задает краевые условия. Аналогичный случай, далее, — оптический спектр атома железа. Уравнение Шрёдингера для системы, состоящей из одного ядра и 26 электронов, определяет динамическое поведение системы; сюда добавляются еще краевые условия, говорящие в данном случае об обращении волновой функции в нуль на бесконечности. Если бы атом был заключен в тесной коробке, спектр получился бы несколько видоизмененным.
Если перенести все эти соображения на физику элементарных частиц, то и здесь дело будет прежде всего заключаться в экспериментальном выявлении и математическом описании динамических свойств системы материи. Затем нужно в качестве вышеупомянутого контингентного элемента задать краевые условия, которые в данном случае будут содержать главным образом утверждения о так называемом пустом пространстве, то есть о космосе и свойствах его симметрии. Так или иначе, прежде всего следует попытаться математически сформулировать закон природы, фиксирующий динамику материи. Вторым шагом следует определить краевые условия. Ведь без них невозможно даже знать, о каком спектре идет речь. Например, я вправе предполагать, что в «черной дыре», как ее понимает сегодняшняя астрофизика, спектр элементарных частиц будет выглядеть совсем иначе, чем у нас. К сожалению, эксперименты тут невозможны.