Шаги за горизонт | страница 113
Так мы подходим к центральной проблеме, тесно связанной с уроками, которые нам дает космическое излучение. Но сначала я скажу об эмпирическом аспекте. Мне хотелось бы пояснить его основополагающее значение в физике элементарных частиц и в физической науке вообще.
Из экспериментов последних десятилетий мы узнали, что различные частицы суть лишь различные стационарные состояния системы «материя». Их характеристиками служат квантовые числа, или, если угодно, параметры преобразований, соответствующих фундаментальным группам. Теоретическое понимание физики элементарных частиц может означать только одно: понимание спектра частиц. Отдельную линию в оптическом спектре железа понять невозможно; но спектр понять можно, его можно связать со шрёдингеровским уравнением системы, состоящей из 26 электронов и ядра атома железа.
Существенные элементы теоретической интерпретации спектра хорошо известны, их можно извлечь как из классической физики, так и из квантовой механики. Мы можем здесь иметь в виду упругие колебания струны, электромагнитные колебания в пространственной полости или стационарные состояния атома, например атома железа. В любом случае нам прежде всего требуется точная формулировка динамических свойств системы, которую мы должны затем дополнить граничными условиями данного специфического случая. В случае колеблющейся струны первый шаг сводится к точной математической формулировке упругих и динамических свойств струны; затем, установив, где закреплена струна, мы можем вычислить спектр ее колебаний. Для электромагнитных колебаний в пространственной полости динамические свойства системы определяются уравнениями Максвелла; граничные условия задаются формой пространственной полости. Из-за сложности проблемы точный расчет всего спектра часто оказывается неосуществимым, однако ничто не мешает получить хорошие приближения для колебаний низшей частоты. Динамические свойства атома железа определяются квантовой механикой, то есть уравнением Шрёдингера. То дополнительное условие, что волновая функция должна обратиться в нуль на бесконечности, служит для установления стационарных состояний. Если бы атом был заключен в малом сосуде, его стационарные состояния были бы иными.
Из этих аналогий ясно, что первое условие для понимания спектра частиц есть точная математическая формулировка динамики материи. Само собой ясно, что слово «частица» не может встретиться в такой формулировке. В самом деле, частица получает свое определение лишь, позднее, при сочетании динамики материальной системы, с граничными условиями; частицы — вторичные структуры. В нашем уголке Вселенной спектр частиц может оказаться совершенно иным, чем в недрах какой-нибудь очень плотной нейтронной звезды, поскольку граничные условия там и здесь вряд ли одинаковы. Этим объясняется фундаментальное значение динамики материи, и остается спросить, каким же образом получить ее математическую формулировку.