Технологии программирования | страница 125



Итак, пусть известна "школьная" формула решения квадратного уравнения вида ax>2 + bx + с = 0.

Известно также, что первоначально надо вычислить дискриминант уравнения D:

D = b>2 — 4ac.

Даже если забыли о случае отрицательности дискриминанта — ничего страшного нет. Записываем формулу решения:

Нам известно, что если D < 0, то из отрицательного числа нельзя извлекать квадратный корень. Поэтому вспоминаем, что при отрицательном дискриминанте нет корней. Еще обнаруживаем факт особого случая, которому соответствует факт при D = 0 наличия двух равных корней. Еще известно, что делить на ноль нельзя, а при a = 0 имеем именно этот случай. В этом случае исходное квадратное уравнение превращается в линейное уравнение:

bx + c = 0.

Решение получившегося уравнения будет следующим:

x = (—c)/b.

Это решение возможно лишь в случае a = 0 и (одновременно) b ≠ 0. В случае a = 0 и (одновременно) b = 0 и (одновременно) c ≠ 0 линейное уравнение не имеет решения.

Анализируя исходное уравнение, выясняем, что в случае a = 0 и (одновременно) b = 0 и (одновременно) c = 0 уравнение имеет бесчисленное множество решений (корни x1 и x2 — любые числа).

Составим наглядную таблицу правил решения квадратного уравнения (табл. 5.3).

Таблица 5.3

Наглядная таблица правил решения квадратного уравнения

№ п/паbсdВариант решения
1a ≠ 0ЛюбоеЛюбоеd > 0Два различных корня
2a ≠ 0ЛюбоеЛюбоеd = 0Два равных корня
3a ≠ 0ЛюбоеЛюбоеd < 0Нет решения
4а = 0b ≠ 0ЛюбоеНетЕсть корень линейного уравнения
5а = 0b = 0c ≠ 0НетНет решения
6а = 0b = 0с = 0НетБесчисленное множество решений

В табл. 5.3 нет сочетаний значений, которые еще не выявлены. Теперь можно определить выходную информацию "черного ящика", которая выдается в пяти вариантах:

1) уравнение имеет бесчисленное множество решений (корни x1 и x2 — любые числа);

2) значения двух различных корней x1 и x2;

3) значения двух равных корней в виде x1 и дополняющей надписи о двух равных корнях;

4) надпись нет решения;

5) значение одного корня x1 с надписью, что уравнение является линейным.

Тип переменных, в которых размещаются выходные значения корней x1 и x2, — вещественный (Real). Теперь определяем входную информацию. Из исходного уравнения следует, что входной информацией являются значения трех коэффициентов a, b, c типа вещественный (Real). В ходе анализа формул было установлено, что значения трех коэффициентов a, b, c могут принимать любые значения, что было не очевидно до анализа формул решения уравнения (например, случай a = 0).