Выбор катастроф | страница 48
Впрочем, Земля, вероятно, никогда не сожмется до меньшего размера, по крайней мере пока она сохраняет свое настоящее состояние. Как не сожмется ничто, что меньше Земли. Даже объекты намного крупнее, чем Земля, например Юпитер, масса которого в 318 раз больше массы Земли, — не сожмутся, пока они предоставлены сами себе.
Звезды, тем не менее, в конечном счете сожмутся. Их масса значительно больше, чем масса планет, и их мощное гравитационное поле вызовет сжатие, как только масса ядерного топлива упадет ниже критической точки, и производимого тепла станет недостаточно для противодействия гравитационной силе. Насколько далеко зайдет сжатие, зависит от интенсивности гравитационного поля сжимающегося тела и соответственно от его массы. Если тело достаточно массивно, то, насколько нам известно, предела сжатию нет, и тело сжимается до нулевого объема Когда звезда сжимается, интенсивность ее гравитационного поля на значительных расстояниях не меняется, но ее поверхностная гравитация увеличивается без предела Одно из последствий этого — то, что скорость исчезновения с поверхности звезды, или вторая космическая скорость, неуклонно увеличивается, когда звезда сжимается. Любому объекту становится все труднее и труднее оторваться от звезды, уйти от нее, когда звезда сжимается и ее поверхностная гравитация увеличивается.
В настоящий момент, например, вторая космическая скорость для нашего Солнца — 617 километров в секунду, почти в 55 раз больше второй космической скорости для Земли. Для Солнца это все еще достаточно малая скорость, и частицы вещества покидают его довольно легко. Солнце (и другие звезды) постоянно испускает субатомные частицы во всех направлениях и с высокой скоростью.
Однако, если бы Солнце сжималось, и, соответственно, увеличивалась бы его поверхностная гравитация, увеличивалась бы и его вторая космическая скорость до тысяч километров в секунду, до десятков тысяч, до сотен тысяч. В конечном счете она достигла бы уровня 300 000 километров в секунду, а это — скорость света.
Когда звезда (или любой другой объект) сжимается до того предела, когда скорость исчезновения равняется скорости света, это означает, что звезда достигла «радиуса Шварцшильда», названного так потому, что предположение о нем впервые высказал немецкий астроном Карл Шварцшильд (1873–1916), но полное теоретическое изучение ситуации не было произведено до тех пор, пока в 1939 году этого не сделал американский физик Д. Роберт Оппенгеймер (1904–1967).