Математика. Утрата определенности. | страница 3
Однако книга Клайна нуждается и в некоторых предостережениях. Рассчитывая на вдумчивого читателя и доверяя его критическому чутью, автор приводит много разных — иногда друг другу противоречащих — точек зрения и свободно сталкивает разные суждения, не настаивая на каком-либо определенном. Однако из того, что Клайн подробно рассказывает, скажем, о философии Канта, вовсе не следует, что сам он является кантианцем. Излагая далее религиозные установки ученых XVII-XVIII вв., Клайн также позже открещивается от них. Автор не претендует на то, чтобы читатель принял какую-либо из изложенных в книге философских концепций, как не требует он и безоговорочно признать правоту той или иной из обсуждаемых им школ, занимающихся основаниями математики: Клайн хочет о многом рассказать, но вовсе не во многом убедить. Это, конечно, не означает, что в книге абсолютно не выражена собственная позиция автора. Так, анализируя взаимоотношения математики с действительностью, Клайн явно стоит на стороне тех, кто видит в математике мощный аппарат познания реального мира, хотя не обходит вниманием и ученых, настаивавших на «объективном» существовании математических понятий как образов, которые складываются в нашем мозгу и позволяют нам судить о Вселенной, существующей для нас лишь в той форме, какую придает ей наш разум (с этой позицией еще в середине XVIII в. полемизировал Л. Эйлер). Впрочем, книга М. Клайна, требующая известного внимания и определенной научной культуры, явно не рассчитана на легковерного читателя — это позволяет нам не спорить со всеми теми из изложенных в книге взглядов, с которыми ни редактор, ни читатель никогда не согласятся.
Впрочем, несколько оговорок, относящихся к книге М. Клайна, возможно, будут здесь полезны. Прежде всего следует иметь в виду, что это отнюдь не учебник, а всего лишь сочинение научно-популярного характера: автор порой позволяет себе упрощать реальную ситуацию — поэтому читателям, которые захотят поглубже ознакомиться с затронутыми в книге вопросами, бесспорно, придется обратиться к дополнительной литературе, начиная с «Философской энциклопедии» (тт. 1-5. — М.: Советская энциклопедия, 1960-1970), содержащей не только достаточно подробные и снабженные дальнейшими литературными ссылками статьи, о всех упоминаемых в книге философах (скажем о Канте и кантианстве, о Юме и его школе), но и весьма отчетливые характеристики основных направлений в области оснований математики [логицизм, гильбертов формализм, интуиционизм и понимаемый Клайном, пожалуй, слишком расширительно конструктивизм (зачастую отождествляемый автором с интуиционизмом)] и даже обсуждение основных фактов и теорем из области оснований математики, упоминаемых в этой книге. Далее, надо учитывать полемическую заостренность этой интересной книги, стремление автора пробудить читателя к размышлениям, вызвать его на спор, для чего Клайн иногда намеренно несколько драматизирует события. Так, он уделяет много внимания дискуссиям об основаниях математики, развернувшимся в начале нашего столетия и не стихающим до сих пор: однако при этом, конечно, надо учитывать, что «истинность» и применимость основного костяка математической теории ни у кого не вызывает серьезных сомнений, так что заключающая гл. XII притча о пауках в старинном замке представляется здесь вполне уместной.