Поиски жизни в Солнечной системе | страница 37
Опарин, по всей видимости, не пытался проверить свою теорию экспериментально. Возможно, он понимал, что существующие аналитические методы непригодны для того, чтобы охарактеризовать сложные смеси органических веществ, которые могли бы образоваться в результате разнообразных реакций между углеводородами, аммиаком и водой. Или, быть может, он довольствовался логической разработкой общих принципов, не считая нужным вникать в многочисленные детали. Как бы то ни было, но теория Опарина никогда не подвергалась проверке до тех пор, пока к ней не обратился Юри. А в 1957 г. его аспирант Стэнли Миллер поставил свой знаменитый эксперимент, благодаря которому проблема происхождения жизни превратилась из чисто умозрительной в научную, в самостоятельный раздел экспериментальной химии.
Моделируя условия па первобытной Земле, Миллер налил на дно колбы немного воды и заполнил ее смесью газов, которые, по мнению Юри, должны были составлять примитивную атмосферу: водорода, метана, аммиака. Затем через газовую смесь пропускался электрический разряд. К концу недели, проводя химический анализ растворенных в воде продуктов, ученый обнаружил среди них значительное количество биологически важных соединений, включая глицин, аланин, аспарагиновую и глутаминовую кислоты — четыре аминокислоты, входящие в состав белков. В дальнейшем эксперимент был повторен с использованием более совершенных аналитических методов и газовой смеси, в большей степени соответствующей принятым ныне моделям примитивной атмосферы. При этом аммиак (который, вероятно, был растворен в первичном океане) в основном заменили азотом, а водород вообще исключили, поскольку сейчас предполагается, что в самом лучшем случае его содержание в примитивной атмосфере было незначительным. В этом эксперименте образовались 12 аминокислот, входящих в состав белков[9], а также ряд других, небелковых соединений, что представляло не меньший интерес по причинам, о которых мы расскажем впоследствии.
Изучение этих необычных реакций синтеза показало, что электрический разряд вызывает образование определенных первичных продуктов, которые в свою очередь участвуют в последующих реакциях до тех пор, пока полностью не растворятся в воде, образуя конечные продукты. К числу наиболее важных первичных продуктов, возникающих в процессе синтеза, относятся цианистый водород (HCN), формальдегид (НСНО), другие альдегиды и цианоацетилен (HCCCN). Аминокислоты образуются из цианистого водорода по крайней мере двумя путями: в результате взаимодействия в растворе цианида, альдегида и аммиака и путем превращения самого HCN в аминокислоты — через сложную последовательность реакций, протекающих в водном растворе.