Компьютерра PDA 28.08.2009-04.09.2009 | страница 54
Эти и многие другие физические аномалии H2O объясняются её сложной и до конца не понятой структурой. Молекулы воды, имеющие форму тупого угла, сильно поляризованы, что приводит к тесным и необычным связям соседних молекул. Достаточно сказать, что у льда известно несколько кристаллических модификаций с разной структурой, и это не считая экзотического аморфного льда.
О строении воды учёные спорят уже более века. И эти споры позволяют шарлатанам спекулировать на "заряженной" или "структурированной" воде, рассуждать о воде с "памятью", обещая быстрое излечение от всех болезней. Порой даже серьёзные учёные попадаются на эту удочку.
Зато хорошо известно, как устроен обычный лёд. В нём молекулы воды организованы в плотную решётку из тетраэдров, в которых каждая молекула связана с четырьмя соседними. При плавлении кристаллов или замерзании жидкостей взаимное расположение соседних молекул, как правило, остается практически неизменным. В жидкости нарушается лишь так называемый дальний порядок - далекие друг от друга молекулы расположены беспорядочно за счет того, что хаотические смещения соседних молекул постепенно накапливаются с увеличением расстояния. Большинство химиков считало, что примерно так же ведет себя и вода: структура тетраэдров там приблизительно сохраняется, хотя некоторые связи между молекулами рвутся, и тем сильнее, чем выше температура.
Однако недавние исследования большой международной команды учёных, вероятно, заставят переписать учебники. Оказывается, свойства воды во многом определяются её поведением на наномасштабах. Структуру воды при нормальных условиях и вплоть до кипения изучали с помощью мощных рентгеновских лучей, сгенерированных на синхротронах в Стэнфордском центре синхротронного излучения (Stanford Synchrotron Radiation Lightsource) и комплексе SPring8 в Японии. Выяснилось, что независимо от температуры в воде одновременно существуют как бы две перемешанные и постоянно превращающиеся друг в друга структуры. Одна - с похожим на лёд менее плотным строением - образует небольшие кластеры размером около нанометра примерно из сотни молекул, выстроенных в тетраэдры. Кластеры соседствуют с другой, более плотной и сильно разупорядоченной структурой. Кластеры продолжают существовать вплоть до температуры кипения - по мере роста температуры их число уменьшается, а беспорядок в неупорядоченной части воды возрастает.
Такая сложная структура H2O помогает объяснить её странные свойства. Тетраэдральная организация молекул в кластерах почти не меняется с колебаниями температуры, тогда как неупорядоченные и более плотные области по мере роста температуры становятся менее плотными и ещё более неупорядоченными. На "плавление" кластеров требуется значительная энергия, что объясняет высокую теплоёмкость воды. А сильные водородные связи между молекулами являются причиной её сравнительно большой поверхностной энергии.