Компьютерра PDA 29.05.2010-04.06.2010 | страница 37



Чтобы ответить на этот вопрос, необходимо, во-первых, проводить наблюдения линий как можно большего количества молекул и с максимально возможным угловым разрешением. Во-вторых, необходимо строить максимально подробные физико-химические модели межзвёздного вещества. Мы знаем, что разные молекулы населяют разные области молекулярных облаков (это не относится, конечно, к вездесущему, но ненаблюдаемому молекулярному водороду).

Например, так называемые дозвёздные ядра, то есть, плотные сгустки вещества, в которых только начался процесс гравитационного сжатия (предполагается, что он закончится рождением звезды), имеют "луковичную" химическую структуру: в плотном центре сосредоточены соединения азота (NH>3, N>2H+), а в более разреженной внешней оболочке обильны соединения углерода (CO, CS, HCO+). Химические модели предсказывают, что баланс между углеродосодержащими и азотосодержащими соединениями меняется со временем, что открывает возможность оценки возраста дозвёздного ядра по его молекулярному составу. Благодаря эффекту Доплера, по относительному сдвигу линий различных молекул можно восстанавливать характер движения вещества в облаке. Собственно говоря, именно анализ спектров этих объектов и позволил сделать вывод о том, что они испытывают глобальное сжатие, предшествующее рождению звезды.

Перспективы развития наблюдательной техники вполне радужные. В мире действует немало радиотелескопов миллиметрового и субмиллиметрового диапазонов, позволяющих получать спектры межзвёздных облаков с высоким разрешением по частоте. В 2009 году Европейским космическим агентством был запущен космический телескоп субмиллиметрового диапазона "Гершель", также в значительной степени ориентированный на изучение молекулярного состава межзвёздной среды и в первую очередь - областей звездообразования.

Наконец, буквально через несколько лет вступит в строй флагман субмиллиметровой и миллиметровой астрономии - интерферометрическая система ALMA (Европейская Южная обсерватория). Эта система из 50 антенн позволит получать изображения не только рождающихся звёзд, но и рождающихся планет, а также обнаруживать спектральные линии, на несколько порядков более слабые, чем можно наблюдать сейчас.

Несколько хуже обстоят дела с моделями. Собственно говоря, с самими моделями особых проблем нет - быстродействие современных компьютеров позволяет легко моделировать одновременное течение многих тысяч реакций, связывающих между собой сотни различных видов молекул (а также атомов и ионов). Но вот параметры многих из этих реакций известны пока крайне плохо, если вообще известны. Поэтому основные усилия в этом направлении сосредоточены на воспроизведении наиболее плохо исследованных реакций в лабораторных условиях. Сделать это очень непросто, поскольку "плотный" межзвёздный газ на самом деле существенно более разрежен, чем лучший лабораторный вакуум.