Занимательная физика. Книга 2 | страница 8
На принципе относительности движения основано и другое приспособление, применявшееся до сих пор только на выставках: так называемые «движущиеся тротуары». Впервые они были осуществлены на выставке в Чикаго в 1893 г., затем на Парижской Всемирной выставке в 1900 г. Вот чертеж такого устройства (рис. 6). Вы видите пять замкнутых полос-тротуаров, движущихся посредством особого механизма одна внутри другой с различной скоростью.
Самая крайняя полоса идет довольно медленно — со скоростью всего 5 км в час; это обыкновенная скорость пешехода, и вступить на такую медленно ползущую полосу нетрудно. Рядом с ней, внутри, бежит вторая полоса, со скоростью 10 км в час. Вскочить на нее прямо с неподвижной улицы было бы опасно, но перейти на нее с первой полосы ничего не стоит. В самом деле: по отношению к этой первой полосе, ползущей со скоростью 5 км, вторая, бегущая со скоростью 10 км в час, делает всего только 5 км в час; значит, перейти с первой на вторую столь же легко, как перейти с земли на первую. Третья полоса движется уже со скоростью 15 км в час, но перейти на нее со второй полосы, конечно, нетрудно. Так же легко перейти с третьей полосы на следующую, четвертую, бегущую со скоростью 20 км/час, и, наконец, с нее на пятую, мчащуюся уже со скоростью 25 км в час. Эта пятая полоса доставляет пассажира до того пункта, который ему нужен; отсюда, последовательно переходя обратно с полосы на полосу, он высаживается на неподвижную землю.
Рисунок 6. Движущиеся тротуары.
Ни один из трех основных законов механики не вызывает, вероятно, столько недоумений, как знаменитый «третий закон Ньютона» — закон действия и противодействия. Все его знают, умеют даже в иных случаях правильно применять, — и однако мало кто свободен от некоторых неясностей в его понимании. Может быть, читатель, вам посчастливилось сразу понять его, — но я, сознаюсь, вполне постиг его лишь десяток лет спустя после первого с ним знакомства.
Беседуя с разными лицами, я не раз убеждался, что большинство готово признать правильность этого закона лишь с существенными оговорками. Охотно допускают, что он верен для тел неподвижных, но не понимают, как можно применять его к взаимодействию тел движущихся… Действие, — гласит закон, — всегда равно и противоположно противодействию. Это значит, что, если лошадь тянет телегу, то и телега тянет лошадь назад с такою же силою. Но ведь тогда телега должна оставаться на месте: почему же все-таки она движется? Почему эти силы не уравновешивают одна другую, если они равны?