101 ключевая идея Астрономия | страница 14
Космический телескоп Хаббла использовался для наблюдения за цефеидами в галактиках, расположенных на расстоянии до 20 млн. парсеков. Эти измерения подтвердили достоверность закона Хаббла. В дальнейшем с помощью космического телескопа «Хаббл» были выполнены другие исследования по наблюдению сверхновых в отдаленных галактиках, подтвердившие действенность закона Хаббла на огромных расстояниях — до 1500 млн. парсеков.
См. также статьи «Цефеиды», «Закон Хаббла», «Звездная величина», «Красное смещение»
ЗАКОНЫ КЕПЛЕРА
Немецкий математик и астроном Иоганн Кеплер (1571–1630) жил в Праге в первые три десятилетия XVII века. Он измерил орбиты каждой планеты Солнечной системы и определил периоды их обращения вокруг Солнца. На основании своих измерений он сформулировал три закона, описывающих движения планет.
Первый закон Кеплера гласит, что каждая планета движется по эллиптической орбите, в одном из фокусов которой находится Солнце.
Второй закон Кеплера гласит, что скорость продвижения воображаемой линии, соединяющей центр планеты с центром Солнца, меняется обратно пропорционально квадрату расстояния от планеты до Солнца.[4]
Кеплер знал, что расстояние между Марсом и Солнцем в перигелии (кратчайшее расстояние) составляет 0,9×r>a, где r>a — расстояние в афелии (наибольшее расстояние). Он обнаружил, что видимое продвижение планеты в афелии составляет 0,81×r>n, где r>n — ее видимое продвижение в перигелии. Это взаимосвязь расшифровывалась как квадрат расстояния в перигелии к расстоянию в афелии (см. рисунок). Отсюда следует, что планета вблизи перигелия имеет скорость большую, чем вблизи афелия, то есть движение планеты неравномерно.
Третий закон Кеплера гласит, что квадраты времен обращений планет вокруг Солнца относятся как кубы их средних расстояний от Солнца. Этот закон можно записать в виде уравнения, где период обращения (Т) исчисляется в годах, а средний радиус (а) — в астрономических единицах T2 = a>3.
Законы Кеплера были доказаны математически Исааком Ньютоном с использованием общей теории тяготения. Доказательство можно привести в виде уравнения, где масса планеты выражается в дробной величине от массы Солнца:
масса×период>2 = средний радиус>3.
См. также статьи «Ньютон», «Орбиты планет».
ЗАКОН ТЯГОТЕНИЯ НЬЮТОНА
До того как Ньютон сформулировал всеобщий закон тяготения, считалось, что объекты обладают свойством тяжести, которое тянет вниз, и летучести, которое толкает их вверх. Ньютон развеял концепцию летучести и показал, что между двумя любыми объектами существует сила гравитационного притяжения. Он объяснил движение объекта, падающего на Землю, сказав, что между объектом и Землей существует сила взаимного тяготения. Ньютон воспользовался той же идеей для объяснения движения Луны вокруг Земли и планет вокруг Солнца. Если бы сила тяготения между Солнцем и планетами внезапно перестала существовать, каждая планета продолжала бы поступательные движения по прямой линии, расположенной по касательной к ее орбите. Сила гравитационного притяжения между Солнцем и планетами заставляет планеты обращаться вокруг Солнца.