Кратчайшая история Европы. Самый полный и самый краткий справочник | страница 4
На основе этих трех определений можно дать определение окружности: прежде всего, это замкнутая линия, образующая некоторую фигуру. Но как дать определение «округлости»? При здравом размышлении сделать это довольно трудно, хотя и возможно. Чтобы не мучить вас, сразу скажу, что окружность – это такая фигура, внутри которой есть точка, обладающая определенным свойством: отрезки прямых линий, проведенных от этой точки до любой точки на окружности, будут равной длины.
Кроме окружностей геометрия рассматривает и параллельные линии, которые никогда не пересекаются, и треугольники во всем их разнообразии, и квадраты, и прямоугольники, и другие фигуры.
Все они образованы линиями и имеют собственные свойства, все они строго определены, как и их пересечения и сочетания. Все доказывается с помощью описанных выше положений.
Например, с помощью свойств параллельных линий можно доказать, что сумма углов в любом треугольнике равна 180 градусам.
ГЕОМЕТРИЯ В ДЕЙСТВИИ
Параллельные линии не пересекаются. Из этого определения следует, что другая линия будет пересекать их под равными углами. Если бы эти углы не были равными, то параллельные линии сходились бы или расходились, и тогда они уже не были бы параллельными. Для обозначения углов мы используем греческие буквы, напоминающие нам об истоках геометрии. Здесь использованы три первые буквы греческого алфавита: альфа, бета и гамма, и на рисунке слева буквой α обозначены два равных угла.
На этом основании можно вычислить сумму углов треугольника. Треугольник ABC на рисунке справа заключен между двумя параллельными линиями; вообще, опираться на известное – это основной способ, каким в геометрии узнают неизвестное. Угол α у точки А равен углу α у точки В, поскольку это противоположные углы, образованные линией, пересекающей параллельные линии. Точно так же угол γ у точки С равен углу γ у точки В. Таким образом, вдоль верхней параллельной линии расположены три угла: α + β + γ. Вместе они образуют прямую линию, равную 180 градусам.
Итак, α + β + γ = 180 градусов. Как мы уже показали с помощью параллельных линий, сумма внутренних углов треугольника равна α + β + γ. Следовательно, сумма внутренних углов треугольника равна 180 градусам.
Так мы использовали свойства параллельных линий для доказательства некоего свойства треугольников.
Геометрия – это не только простая, элегантная и логическая, но еще и красивая система. Но что значит «красивая»? Красивой ее находили греки, и это многое объясняет в их понимании мира. Греки занимались геометрией не только для гимнастики ума, как это мы делаем в школе, и не только в практических целях, таких как измерение площади поля или навигация. Они воспринимали геометрию как средство объяснения основополагающих законов мироздания. Если посмотреть на все, что нас окружает, можно поразиться удивительному разнообразию мира: самые разные формы самых разных цветов и размеров. На первый взгляд кажется, что одновременно происходит великое множество разных событий, причем бессистемно и хаотично. Греки же верили, что всему можно найти простое и логичное объяснение. В основе всего сущего должно лежать нечто простое, регулярное и логичное. Нечто вроде геометрии.