Фреймы для представления знаний | страница 85



Сложность решения проблемы представления чрезвычайно велика, и это объясняется в первую очередь недостатком наших знаний о механизмах человеческого мышления. Результаты, полученные при изучении человеческого интеллекта, оказывают все большее влияние на решение проблемы искусственного интеллекта. Последние в свою очередь помогают ученым глубже понять принципы работы человеческого мозга.

Существует несколько направлений исследований в области искусственного интеллекта, отличающихся, в частности, своими подходами к проблеме представления знаний.

Наиболее известные методы машинного представления знания: логистический, теоретико-графовый, а также метод, использующий для описания мира вектор-функции, определенные на нормированных пространствах.

Логистический метод, используемый, например, при построении такой известной системы для решения задач, как STRIPS (P.Файкс, Н.Нильсон, 1973), основан на привлечении языка исчисления предикатов первого порядка для формирования модели внешнего мира, на использовании понятий пространства состояний, а также методов доказательства теорем и эвристических методов как основных механизмов поиска решений. Модель в данном случае представляет собой систему аксиом — предложений языка исчисления предикатов первого порядка, определяющую всю совокупность объектов, характеристик и свойств внешнего мира робота, существенных для его функционирования. В случае относительно простых, статических сред системы аксиом выглядят достаточно компактно, а существующие поисковые процедуры (такие, как метод резолюций и его модификации, эвристика «анализа целей и средств» и др.) оказываются мощным средством для выработки планов действий. Но как только возникает задача создания машинной модели реальной, динамичной, недетерминированной внешней среды, то логистический подход оказывается несостоятельным вследствие резкого усложнения как самих конструкций моделей, так и формализованного представления в них смысловых отношений между элементами внешней среды.

Кроме того, с усложнением внешнего мира число формализующих его аксиом лавинообразно растет, что приводит не просто к громоздкости машинной модели окружающей среды, но к ряду принципиальных трудностей. Они связаны, во-первых, с выбором только того подмножества из всего множества аксиом, которое имеет непосредственное отношение к решаемой в данный момент времени задаче, и, во-вторых, с активизацией и выполнением лишь тех дедуктивных процедур, которые существенны для получения конечного результата. Проблема заключается совсем не в том, чтобы из множества выведенных отобрать нужные теоремы, а в том, чтобы не выводить ненужных.