Фокусы-покусы квантовой теории | страница 5
Сегодняшние академики этакими вопросами, конечно, не мучаются. «Мы же не дураки, – поясняют они. – Потому и появилась квантовая теория, что перестали работать старые подходы!» Ну, ну. Старые подходы работать перестали, а новые – заработали, что ли? Или шулерство в вопросе о согласии с опытом – это и есть «новые подходы»? Тогда позвольте вас поздравить: рождение квантовой теории прошло как нельзя лучше! Лихо разобравшись с равновесным спектром, новорожденная направила свой прищуренный взор на учение об атомах. И, с улыбочкой, многообещающе потёрла ладошки одна о другую…
Вообще-то, тогдашние представления об атомах и впрямь были чересчур примитивными: компоновку положительных и отрицательных зарядов приходилось додумывать. Так, пользовалась популярностью модель Томсона, в которой почти вся масса атома и его положительный заряд мыслились распределёнными по некоторому шаровому объёму, а отрицательные электроны мыслились вкраплениями, как «изюм в пудинге». Но вот лаборант Резерфорда обнаружил, что, при обстреле тончайшей фольги альфа-частицами, часть из них отскакивает назад. Такое возможно, если почти вся масса атома сосредоточена в очень малой части его объёма. Отсюда у Резерфорда родилась идея об атомном ядре, которому присуща почти вся масса атома и положительный заряд – а заодно идея о том, что электроны, чтобы не упасть на ядро из-за кулоновского притяжения, должны вокруг него обращаться, будучи удерживаемы центробежными силами.
Как и сейчас, тогда мало кто понимал, что центробежная сила не может действовать на элементарную частицу. Она может действовать лишь на структурное образование из элементарных частиц, возникая из-за радиального градиента их линейных скоростей вращения. А обращение электрона вокруг ядра нисколько не препятствовало бы падению на него. К тому же, непонятно, какие таинственные силы обеспечивали бы восстановление электронных орбит после их возмущений. Вот, для сравнения: спутник на околоземной орбите. В результате небольшого возмущения – например, кратковременного включения двигателя – свободный полёт продолжается уже по новой орбите. Здесь никаких восстанавливающих сил нет. А в атомах они непременно должны быть, потому что атомные конфигурации имеют запас устойчивости. А также – механизм самовосстановления. Об этом свидетельствуют и воспроизводимость размеров атомов, и характеристические атомные спектры излучения-поглощения. И, ведь, самовосстанавливаться есть после чего. Вон, при столкновении пары спутников, запущенных во встречных направлениях и летящих со скоростями в несколько километров в секунду, от них останется мало чего пригодного к употреблению. А орбитальные скорости электронов в атомах, по теоретическим раскладочкам, составляют пару тысяч километров в секунду. Прикиньте-ка, что будет даже при лёгком соприкосновении двух атомов, электроны которых столкнутся своими лобешниками. Ну, допустим, что лобешники у них достаточно железобетонные, так что ошмётки от электронов не полетят. Но ведь их орбитальное движение, как бы, немного нарушится, правда? А теперь вспомните, что в газах, при нормальных условиях, из-за теплового движения атом испытывает примерно миллиард столкновений в секунду. И – ничего, остаётся самим собой. Живучий, стервец! Тут академики попытаются нас образумить – мол, обращение электронов происходит так быстро, что имеет смысл говорить о непроницаемости орбит, из-за которой атомы в газах и отскакивают друг от друга при столкновениях, а электроны разных атомов никак не могут «столкнуться лобешниками». Позвольте, а куда же девается эта непроницаемость орбит, когда атомы, пардон, вступают в химическую связь? Али вы подзабыли, насколько глубоко они при этом проникают друг в друга? Так посмотрите в справочниках: раздел называется «Размеры молекул». Не редкость, что расстояние между центрами атомов в молекуле меньше, чем радиусы самих атомов! Ну, полная гармония: когда хочется, на тебе проницаемость, а когда не хочется, на тебе непроницаемость! И, в чём разница – со стороны совершенно незаметно! Да…