Незаметные убийства | страница 29



был очень странным днем — и во многих смыслах. Думаю, это единственный день в моей жизни, который я могу восстановить час за часом. Стоило ей закончить объяснение, как я почувствовал нечто смутное, некий, если хотите, взбрык, — пояснил он с улыбкой, — ведь такого же рода явления происходят и в математике, то есть на самом деле все зависит от масштабов. Те недоказуемые теоремы, которые обнаружил Гёдель, скорее всего принадлежат миру, где царят бесконечно малые величины, недоступные обычному математическому зрению. Итак, оставалось всего лишь определить соответствующее понятие масштаба. Я сумел обоснованно показать: если математическая теорема может быть сформулирована в границах той же «шкалы», что и аксиомы, она принадлежит обычному миру математиков и будет иметь либо доказательство, либо опровержение. Но если ее изложение требует иного масштаба, тогда возникает опасность, что она — часть глубинного мира бесконечно малых величин, но в любом случае латентного, того, что невозможно ни доказать, ни опровергнуть. Как вы можете представить, самая тяжелая часть работы, отнявшая у меня тридцать лет жизни, — это последующее доказательство того, что все вопросы и догадки, сформулированные математиками со времен Евклида и до сего дня, могут быть вписаны в те системы, что близки системам аксиом, на которые, собственно, и делается упор. Я определенно доказал, что обычная математика, вся та математика, которой изо дня в день занимаются наши отважные коллеги, относится к разряду «видимого» микроскопического.

— Но, полагаю, тут нет никакой случайности, — перебил я собеседника.

Я попытался соединить результаты, полученные мною во время работы на семинаре, с тем, что услышал теперь, и отыскать соответствующее им место в той огромной фигуре, которую чертил на моих глазах Селдом.

— Нет, разумеется. Моя гипотеза в основе своей связана с эстетикой, которая царила в ту эпоху и которая была по сути своей неизменной. Нет Кантовой «целесообразности», зато есть эстетика простоты и элегантности, которая определяет также и формулировки гипотез и догадок; математики полагают, что красота теоремы требует, так сказать, божественных пропорций между простотой аксиом в отправной точке и простотой вывода в точке прибытия. Самое затруднительное, обременительное и хлопотное всегда скапливалось на промежуточном отрезке пути — на доказательстве. Так вот, пока остается в силе такая эстетика, «естественным путем» не могут родиться недоказуемые идеи.