История с узелками | страница 26
— Дорожка была замкнутой? — поинтересовался Хью.
— Нет, молодой человек, концы дорожки не смыкались. Каждый раз, когда дорожке уже, казалось, не оставалось ничего другого, как сомкнуться, она поворачивала и вновь шла вокруг всего сада рядом со своим первым отрезком, потом снова поворачивала и снова шла вокруг всего сада вдоль предыдущего отрезка и так до тех пор, пока в саду не осталось ни клочка земли.
— Дорожка извивалась, как змея с углами? — спросил Ламберт.
— Совершенно так же! И если пройти вдоль всей дорожки до последнего дюйма, держась ее середины, то длина пройденного пути окажется равной 2 >1/>8 мили. А пока вы найдете длину и ширину сада, я поразмыслю над тем, почему объем воды в большом ведерке оказался меньше объема маленького ведерка.
— Вы, кажется, сказали, что у вашего друга в саду росли чудеснейшие цветы? — спросил Хью, когда Бальбус уже выходил из комнаты.
— Сказал, — ответил Бальбус.
— А где же они росли? — удивился Хью, но Бальбус сделал вид, что не расслышал вопроса. Предоставив мальчикам ломать голову над заданной задачей, он уединился у себя в комнате, чтобы поразмыслить над обнаруженным Хью механическим парадоксом.
— Для простоты предположим, — бормотал он, расхаживая взад и вперед по комнате и глубоко засунув руки в карманы, — что у нас имеется цилиндрический стеклянный сосуд, на поверхности которого через каждый дюйм нанесены метки, и мы заполним его водой до десятой метки. Условимся считать, что каждое деление на стенке сосуда соответствует одной пинте воды. Возьмем теперь сплошной цилиндр, каждый дюйм которого имеет объем в полпинты воды, и погрузим его на 4 дюйма в воду, налитую в первый цилиндр. Дно сплошного цилиндра достигнет отметки 6 дюймов на стенке первого цилиндра. При этом сплошной цилиндр вытеснит 2 пинты воды. Что станет с этими двумя пинтами? Если бы сплошной цилиндр не выступал над поверхностью воды, то эти две пинты преспокойно расположились бы сверху, заполнив наружный цилиндр до отметки 12 дюймов. Но, к несчастью, сплошной цилиндр выступает над поверхностью воды, занимая половину объема, который мог бы вместиться между отметками 10 и 12 дюймов. Следовательно, оставшаяся часть пространства может вместить лишь одну пинту. А что же станется со второй? Если бы сплошной цилиндр не выступал над поверхностью воды, эта пинта преспокойно могла бы разместиться сверху, заполнив наружный цилиндр до отметки 13 дюймов. Но, к сожалению… О, тень великого Ньютона! — воскликнул Бальбус в ужасе. — Что же сможет остановить непрестанно поднимающийся уровень воды?