Онтология математического дискурса | страница 48



Есть один очень важный момент, отличающий дополнительное построение от экспозиции. Построение треугольника в соответствии со схемой понятия треугольника означало подведение единичного объекта под общее правило. Если это общее правило (понятие треугольника) задано рассудком, то подведение подразумевает действие определяющей способности суждения. Но для той конструкции, которая была создана при дополнительном построении, у нас еще не было соответствующего понятия. То понятие, возможность которого предполагается в утверждении теоремы, не имеет еще под собой никакой схемы, никакого конкретного правила построения. Это правило необходимо изобрести, причем изобрести так, чтобы из него выводилось утверждение теоремы. Иными словами, дополнительное построение требует действия рефлектирующей способности суждения. Создаваемая конструкция (равно как и правило, по которому она создается) есть обобщающая догадка, есть та общая структура, в рамках которой становятся ясными интересующие нас отношения ранее построенных объектов. Все они находят свое место в объединяющей их конфигурации и конструирование каждого отдельного элемента становится целесообразным. Следовательно, только благодаря рефлектирующей способности суждения возможен синтез понятия в теореме.

Если построение есть непосредственное продолжение экспозиции, то доказательство как бы продолжает детерминацию. Оно представляет собой речь по поводу проведенного построения, описывая полученную в ходе его конструкцию. Доказательство, как и детерминация, имеет дело со следом. Хинтикка утверждает, что эта часть теоремы чисто аналитическая, поскольку, в отличии от экспозиции и построения, не вводит никаких новых единичных предметов. Все доказательство можно развернуть в виде цепочки силлогизмов.

1. Накрест лежащие углы равны. Углы 1 и 4 - накрест лежащие. ____________________________________ углы 1 и 4 - равны.

2. Накрест лежащие углы равны. Углы 2 и 5 - накрест лежащие. ___________________________________________ Углы 2 и 5 - равны.

3. Смежные углы в сумме равны двум прямым. Углы 1 и 3+5 - смежные. ___________________________________________

Углы 1 и 3+5 - в сумме равны двум прямым

4. Если слагаемые равны между собой, то их суммы равны . Слагаемые в суммах 4+5+2 и 1+3+2 равны между собой. ______________________________________________________

4+5+2 и 1+3+2 равны между собой.

5. Если две величины порознь равны третьей, то они равны между собой. 1+2+3 и p порознь равны 4+5+2 ___________________________________________ 1+2+3 и p равны между собой.