Онтология математического дискурса | страница 40
Похожее рассмотрение можно провести и относительно математического рассуждения (вывода, доказательства), поскольку оно является объектом метаматематики. Рассуждение, будучи конструкцией, появляющейся в результате комбинирования знаков, представляет собой чувственно воспринимаемый объект. Он предстает в виде определенной пространственной конфигурации, определяемой как способом сочетания составляющих его знаков, так и способом начертания самих этих знаков. Как чувственно воспринимаемый объект рассуждение выступает в качестве субъекта метаматематического суждения. Задачей метаматематики оказывается установление ряда предикатов (например, предиката непротиворечивости) для названного субъекта. Но такого рода предицирование есть не что иное как выражение определенных пространственных свойств созерцаемого (точнее создаваемого на бумаге или на доске) объекта. (См. примечание 5) Рассуждение или система аксиом обнаруживает себя как непротиворечивое (обладающее предикатом непротиворечивости) в ходе его пространственного (строго говоря, пространственно-временного) конструирования. Суждение о непротиворечивости оказывается таким образом априорным и синтетическим, в самом строгом кантовском смысле. Гильбертовская метаматематика содержит в себе все установленные Кантом элементы знания: данный в созерцании объект, являющийся в пространстве и времени, синтетическое суждение об этом объекте и, наконец, синтез продуктивной способности воображения, в результате которого этот объект конструируется.
Таким образом две соперничающие математические школы имеют один и тот же философский корень. Можно сказать, что каждая из них сделала больший акцент на одной из двух выделенных Кантом интуиций. Если Брауэр, как мы видели, считал исходной интуицию времени, явно утверждая вторичность и производность пространства, то Гильберт, вообще ничего не говоря о времени, явно рассматривал пространство и пространственное конструирование как основу математики. Очевидная кантианская родословная двух влиятельных математических традиций несомненно требует более внимательного анализа кантовского текста. Именно к рассмотрению проблемы существования в математики с позиций философии Канта мы перейдем в следующей главе.
Примечания к Главе 2
1. Хотя Кантор и пытается выстроить иерархию математических понятий, подобную родо-видовой иерархии, и рассмотреть все построенные так объекты как некие субстантивированные универсалии, предлагаемая им процедура выделения общих свойств имеет мало общего с тем абстрагированием, которое описывает, например, Боэций (см. Введение). Как мощность, так и порядковый тип бесконечного множества невозможно определить как его собственное свойство. Оно не обладает этим свойством как субстанция своим атрибутом. Мощность бесконечного множества определяется как свойство отношения множеств. Сущности можно приписывать признак, рассматривая ее саму по себе, независимо от других сущностей. Мощность множества (равно как его порядковый тип) устанавливается только для класса множеств. Поэтому подвести канторовское представление о существовании под аристотелевское учение о сущности невозможно без серьезных натяжек, хотя сам Кантор, по-видимому, хотел именно этого. вернуться в текст