Онтология математического дискурса | страница 27
7. Связь категорий объект и факт нуждается в дополнительном рассмотрении. Мы проведем его в Главе 3 при сопоставлении категорий действительности и необходимости. вернуться в текст
8. Причем факты могут служить для фальсификации теории. Последнее означает, что построенный при заданных посылках объект не может быть "вписан" в теоретическую структуру. На связь попперовской идеи фальсификации с "Критикой способности суждения" указано также в [33]. Впрочем, эта связь должна быть предметом особого исследования. Равно как и связь представлений Поппера о строении научной теории с развертыванием категории "действительности" у Кассирера ([32],c. 349-400). Оба эти мыслителя строят очень похожие конструкции, связывающие частные факты с общей гипотезой. вернуться в текст
ГЛАВА 2 Интерпретации существования в математике
1 Основные стратегии доказательства существования
Важной задачей, которую мы должны решить, проводя исследование онтологии математического дискурса, состоит в выяснении тех традиционных способов, которыми математика устанавливает существование своих предметов. Для этого следует обратить внимание на математические предложения, утверждающие о чем-либо, что оно "существует". Рассмотрение доказательств таких предложений позволяет понять, в каком смысле употреблено в нем это слово. Способ доказательства существования проясняет, прежде всего, интерпретацию существования в том или ином утверждении.
Если попытаться разобрать основные математические тексты (т.е. тексты, производимые математиками разного класса и уровня и читаемые в сообществе, имеющем к математике какое-либо отношение), то при самом поверхностном анализе можно увидеть три способа доказательства существования и, соответственно, три способа определить онтологический статус предмета исследования.
Первый (и, возможно, наиболее распространенный) способ доказательства состоит в непосредственном построении объекта, в существовании которого предстоит убедиться. В качестве классических областей применения такого рода доказательств принято указывать евклидову геометрию, алгебру и, отчасти, теорию чисел [18]. Однако, важно понимать, что его употребление вполне естественно и для вполне "нефинитных" областей, например, для функционального анализа. Чтобы обратить внимание на некоторые важные особенности такого способа доказательства, уместно обратиться к примеру. Одна из известных теорем функционального анализа утверждает, что для любого сжимающего отображения произвольного полного метрического пространства в себя существует единственная неподвижная точка этого отображения. Это утверждение доказывается так: в метрическом пространстве выбирается произвольная точка, данное сжимающее отображение применяется сначала к этой точке, потом к получившемуся в результате его применения образу этой точки, потом к образу образа и т.д. Выясняется, что возникающая при этом последовательность имеет предел и этот предел - точка пространства, не изменяющаяся при применении к ней данного отображения.