Элементы схемотехники цифровых устройств обработки информации | страница 3



Коды
Двоичный16-ричныйДвоично-десятичный
000000000
1000110001
2001020010
3001130011
4010040100
5010150101
6011060110
7011170111
8100081000
9100191001
101010A00010000
111011B00010001
121100C00010010
131101D00010011
141110E00010100
151111F00010101

1.2.1 Основные положения алгебры логики

     Различные логические переменные могут быть связаны функциональными зависимостями. Функциональные зависимости между логическими переменными могут быть описаны логическими формулами или таблицами истинности. 

В общем виде логическая формула функции двух переменных записывается в виде: y=f(X>1, X>2), где X>1, X>2 — входные переменные.

В таблице истинности отображаются  все возможные сочетания (комбинации) входных переменных и соответствующие им значения функции y, получающиеся в результате выполнения какой-либо логической операции. При одной переменной полный набор состоит из четырёх функций, которые приведены в таблице 2. 


Таблица 2 – Полный набор функций одной переменной

XY1Y2Y3Y4
01010
10110

Y1 — Инверсия, Y2 — Тождественная функция, Y3 — Абсолютно истинная функция и Y4 – Абсолютно ложная функция.

Инверсия (отрицание) является одной из основных логических функций, используемых в устройствах цифровой обработки информации. 

При двух переменных полный набор состоит из 16 функций, однако в цифровых устройствах используются далеко не все.

Основными логическими функциями двух переменных, используемыми в устройствах цифровой обработки информации являются: дизъюнкция (логическое сложение), конъюнкция (логическое умножение), сумма по модулю 2 (неравнозначность), стрелка Пирса и штрих Шеффера. Условные обозначения логических операций, реализующих указанные выше логические функции одной и двух переменных, приведены в таблице 3.


Таблица 3 Названия и обозначения логических операций

Операцию инверсии можно выполнить чисто арифметически: 

  и алгебраически:
  Из этих выражений следует, что инверсия x, т.е.
 дополняет x до 1. Отсюда и возникло ещё одно название этой операции — дополнение. Отсюда же можно сделать вывод, что двойная инверсия приводит к исходному аргументу, т.е. 
  и это называется законом двойного отрицания.


Таблица 4 – Таблицы истинности основных функций двух переменных

ДизъюнкцияКонъюнкцияИсключающее ИЛИСтрелка ПирсаШтрих Шеффера
X1X2YX1X2YX1X2YX1X2YX1X2Y
000000000001001
011010011010011
101100101100101
111111110110110

Дизъюнкция. В отличие от обычного арифметического или алгебраического суммирования здесь наличие двух единиц даёт в результате единицу. Поэтому при обозначении логического суммирования предпочтение следует отдать знаку (∨) вместо знака (+) [1].