Этот «цифровой» физический мир | страница 36



Это заявление, как оказалось, отнюдь не согласуется с экспериментальными фактами. Так, визуально-двойные звёзды имеют заведомо различные тангенциальные скорости относительно земного наблюдателя – но они испытывают такие же аберрационные сдвиги, как и одинарные звёзды, причём эти сдвиги у двойных звёзд одинаковы не только по величине, но и по направлению. Концепция относительных скоростей, с очевидностью, не работает: годичная аберрация звезд зависит лишь от годичного движения наблюдателя! До сих пор релятивисты делают вид, что проблемы не существует – хотя, фактически, у них отсутствует понимание одного из ключевых явлений в оптике движущихся тел.

Между тем, это явление находит естественное объяснение на основе нашей модели, согласно которой частотные склоны играют роль той самой «небесной тверди», относительно которой локально фиксирована фазовая скорость света в вакууме. Т.е., эта скорость является фундаментальной константой лишь в локально-абсолютном смысле. Например, пока свет движется в пределах области планетарного тяготения, его скорость равна c только в планетоцентрической системе отсчёта. А в гелиоцентрической системе отсчёта она векторно складывается с гелиоцентрической скоростью планеты. Наоборот, по межпланетному простору свет движется со скоростью c только в гелиоцентрической системе отсчёта – для скорости же его относительно какой-либо планеты, следует, опять же, делать соответствующий векторный пересчёт. Заметим, что эти пересчёты следует делать не по релятивистскому закону сложения скоростей, а по классическому!

Согласно этой логике, свет от далёкой звезды, прошедший сквозь границу области земного тяготения, «игнорирует» тот факт, что эта область движется по межпланетному пространству. Свет движется по этой области со скоростью c – причём, направление движения определяется простым правилом: свет продолжает двигаться в том направлении, в котором он пересёк границу. А это направление, т.е. угол влёта, определяется классической комбинацией вектора орбитальной скорости области земного тяготения и вектора скорости света на подлёте к границе. В частном случае, когда эти векторы ортогональны, отношение их модулей даёт тангенс угла годичной аберрации – одной из фундаментальных констант в астрономии.

Таким образом, феномен годичной аберрации находит элементарное объяснение как пограничный эффект, происходящий при переходе светом от звёзд границы области земного тяготения – с переключением вектора скорости света на новую локально-абсолютную привязку. Единым махом объясняются особенности годичной аберрации, которые до сих пор не удалось объяснить на основе концепции относительных скоростей. Во-первых, это одинаковость больших полуосей эллипсов годичной аберрации для всех звёзд, независимо от их других собственных движений по небесной сфере. Во-вторых, это результат проверки того, не происходит ли аберрационный «излом» движения света на телескопе, с помощью которого ведутся наблюдения. Для этой проверки Эйри заполнил телескоп водой. Скорость света в воде примерно в полтора раза меньше, чем в воздухе. Если бы «излом» происходил на телескопе, то отношение скорости движения телескопа к скорости света в нём дало бы в полтора раза больший аберрационный эффект. Однако, эффект остался прежним – значит, в телескоп попадает свет, уже испытавший аберрационное отклонение где-то выше. Наконец, в-третьих, это своеобразная селективность действия феномена: годичная аберрация наблюдается для объектов, находящихся за пределами области земного тяготения – но не наблюдается для объектов, находящихся внутри этой области, например, для Луны и искусственных спутников Земли.