Этот «цифровой» физический мир | страница 26



>L и N>H, и, аналогично, для южного счётчика, S>L и S>H – и находилось отношение ξ=(S>H/S>L)/(N>H/N>L). При справедливости концепции относительных скоростей, отношение ξ было бы, с точностью до погрешностей, равно единице. При справедливости же концепции абсолютных скоростей, отношение ξ отличалось бы от единицы – причём, если бы имел место эфирный ветер из-за орбитального движения Земли, ξ зависело бы от времени суток. Как показывают результаты [Ч1], которые мы воспроизводим (см. Рис.1.7.2), ξ близко к единице и не зависит от времени суток – т.е. орбитальный эфирный ветер никак не проявился. Вместе с тем, среднее по приведённому набору данных составляет, как можно видеть, 1.012. Не свидетельствует ли этот результат об эфирном ветерке из-за суточного вращения Земли?

Если обозначить скорость этого ветерка через V, то квадратично-допплеровские расхождения линий излучателя и поглотителя для южного счётчика и, наоборот, их сближение для северного счётчика, составит величину Δ=2Vv/c>2, где v – линейная скорость вращения излучателя и поглотителя. Используя график (см. Рис.1.7.1), мы нашли аппроксимации для функций скоростей счёта обоих счётчиков от скорости V – для меньшей и большей вышеназванных скоростей v. При меньшем значении v мы использовали линейную аппроксимацию, для S>L(V) и N>L(V), а при большем – квадратичную аппроксимацию, для S>H(V) и N>H(V). Вышеназванная комбинация этих четырёх функций даёт зависимость отношения ξ от V, которая приведена на Рис.1.7.3.

Рис.1.7.3

Как можно видеть, на этом графике значение ξ=1.012 соответствует двум значениям V: 6.5 и 301 м/с. Для первого из них мы не усматриваем физического смысла, а второе всего на 7.9% отличается от 279 м/с – линейной скорости суточного вращения на широте Бирмингема, где проводился опыт. Едва ли можно сомневаться в том, что авторы [Ч1] продетектировали локально-абсолютную скорость лаборатории – но, странным образом, они проигнорировали этот результат.

Ещё один эксперимент, где проявилась локально-абсолютная скорость лаборатории, провели Брилет и Холл [Б1]. Они разместили гелий-неоновый лазер (3.39 мкм) и внешний

Рис.1.7.4

резонатор Фабри-Перо, по которому лазер был стабилизирован, на медленно вращающейся платформе (см. Рис.1.7.4). Частота этого лазера сравнивалась с частотой невращающегося гелий-неонового лазера, стабилизированного по линии поглощения в метане. Авторы утверждали, что эффект от «эфирного ветра» не превышал 0.13±0.22 Гц, или (1.5±2.5)·10