Этот «цифровой» физический мир | страница 180



Бэринджер и Монтгомери [Б4] в качестве источника излучения аннигиляции использовали активированные кусочки фольги Cu>64, спрессованные в маленькую «пилюлю», которая покрывалась тонким слоем свинца, не пропускавшим наружу позитроны. Такая «пилюля» излучала, практически, в полный телесный угол. Два счётчика располагались на равных расстояниях по разные стороны от неё – с возможностью механической отстройки от «правильной» геометрии, при которой источник и оба счётчика находились на одной прямой. Полученная скорость счёта совпадений, как функция угла отстройки от «правильной» геометрии, вызывает недоумение; мы воспроизводим диаграмму из [Б4] на Рис.4.8.


Рис.4.8


Сразу бросается в глаза, что уменьшение скорости счёта совпадений при увеличении угла отстройки выглядит неубедительно: подавляющее большинство точек даёт примерно одну и ту же скорость счёта. Более того: четыре точки, которые дают уменьшенную скорость счёта совпадений при больших углах отстройки, имеют, по сравнению с остальными точками, существенно меньшие доверительные интервалы. А поскольку эти интервалы «вычислены на основе количества отсчётов, взятых в обработку для каждой точки» (перевод наш), то неизбежен вывод: четыре названные точки были получены в иных условиях опыта, чем остальные, а именно – при существенно увеличенных выборках. Нетрудно видеть, к чему это должно было привести. У случайной последовательности импульсов интервалы между двумя соседними импульсами имеют гауссово распределение вероятностей с центром, соответствующим средней частоте появления импульсов. Увеличение выборки не сдвигает центр этого распределения, но изменяет его форму, увеличивая вероятности для значений интервалов в области центра распределения. Соответственно, при этом уменьшаются вероятности для значений интервалов на «крыльях» распределения – в том числе и для коротких интервалов, меньших временного разрешения схемы совпадений. В итоге, увеличение выборки в рассматриваемом эксперименте должно было привести к уменьшению вероятности срабатывания схемы совпадений – и, значит, именно к уменьшению средней скорости счёта совпадений.

Спрашивается: а зачем понадобилось прибегать к изменению условий опыта при больших отстройках от «правильной» геометрии? Мы сильно подозреваем: это понадобилось затем, что, при одинаковых условиях опыта, статистически значимого снижения скорости счёта совпадений при больших отстройках не наблюдалось. А это было прямым указанием на то, что схема регистрировала случайные совпадения – реагируя на кванты, появлявшиеся в независимых друг от друга актах аннигиляции.