Этот «цифровой» физический мир | страница 165
Например, говорят, что, при столкновениях частиц, налетающая частица передаёт покоящейся частице свою кинетическую энергию. В рамках же нашего подхода, при таком столкновении полные энергии каждой из частиц не изменяются, а происходят равные по величине и противоположные по направлению перераспределения между собственной и кинетической энергиями у каждой из этих частиц.
Аналогично, при ударном возбуждении атома ударяющий электрон отнюдь не отдаёт атому свою кинетическую энергию, которая превращается в энергию возбуждения атома. При этом, как мы полагаем, у ударяющего электрона уменьшается кинетическая энергия и, соответственно, увеличивается собственная, а у атома – уменьшается энергия связи и, соответственно, тоже увеличивается собственная. Если происходит ударная ионизация, то сначала энергия связи обнуляется, с соответствующим восстановлением собственных энергий, а затем освобождённый электрон ещё и может быть приведён в движение – с превращением части его собственной энергии в кинетическую. Сходным образом, дело обходится без передачи энергии от атома к атому, когда при их соударении происходит столкновительный перенос возбуждения.
Наконец, при квантовом перебросе световой энергии с атома на атом происходят, как мы полагаем, всего лишь скоррелированные перераспределения энергии у этой пары атомов (3.10).
Подчеркнём, что автономные превращения энергии происходят со стопроцентным коэффициентом полезного действия, совершенно без потерь энергии. Так, при ускорении элементарной частицы вещества гравитационным или электромагнитным воздействием, не происходит диссипации энергии. Напротив, если говорить про двигатели, в которых сжигается топливо, то они производят почти стопроцентную диссипацию, которая сопровождается жалким побочным продуктом – автономным приростом кинетической энергии у частиц приводимого в движение аппарата. Насколько возросли бы возможности техники, если бы в ней использовался прямой доступ к алгоритмам, управляющим автономными превращениями энергии!
4.5. Где же он, релятивистский рост массы (энергии, импульса)?
Тезис о том, что кинетическая энергия элементарной частицы не может превышать одной трети от её энергии покоя (4.4), кажется смешным с позиций современной официальной физики – особенно в свете достижений ускорительной техники, где, как нас уверяют, электронам, имеющим энергию покоя в полмиллиона эВ, сообщают кинетические энергии, исчисляемые миллиардами эВ. «Если бы не было релятивистского роста массы, - вещают с телевизионных экранов академики, - то не работал бы ни один ускоритель!» Для домохозяек такие аргументы – вполне убедительны. Они же не знают, как эти ускорители «работают». А если бы узнали – ужаснулись бы.