Этот «цифровой» физический мир | страница 127
Что касается объяснения волновых свойств света, то этот вопрос мы рассмотрим в отдельном параграфе (3.5).
3.5. Происхождение волновых свойств света.
Основное волновое явление при распространении света – интерференция. При прохождении светом, например, сквозь систему из множества параллельных щелей, получается интерференционная картинка – чередование светлых и тёмных полос. Волновая теория легко объясняет эту картинку. Волновой фронт, проходя сквозь эти щели, дробится на множество участочков, которые становятся источниками вторичных волн. Складываясь, эти вторичные волны либо усиливают друг друга, либо, наоборот, гасят – в соответствии с разностью фаз, которая зависит от направления распространения света за щелями. Там, где волны складываются синфазно, получаются светлые полосы, а там, где они складываются противофазно – тёмные. Но как объяснить эту картинку, если представлять свет летящими фотонами? Если фотон – полноценная частица, то он должен пролетать сквозь какую-то одну щель, а не сквозь несколько щелей сразу. Откуда же тогда взяться интерференционной картинке? Кстати: чем больше щелей, тем эта картинка резче. Что же, фотон пролетает сквозь одну щель, но чувствует все остальные?
Поразительно, но даже этот простейший случай ортодоксальная наука до сих пор не может объяснить – на основе концепции летящих фотонов. Сначала говорили, что каждый фотон проходит сквозь какую-то одну щель, но полосы получаются, когда фотонов пролетает много. После щелей они, якобы, накладываются друг на друга – вот, мол, и получаются полосы, как и в случае волн… Нет, так не пойдёт! Если фазы у фотонов при прохождении щелей распределены случайным образом – а это обычное дело при нелазерных источниках света – то никакой системы светлых и тёмных полос не получится: чтобы она получилась, нужна одна и та же фаза при прохождении щелей. Но ведь эта система полос успешно получается! Значит, можно заподозрить, что дело здесь вовсе не в наложении фотонов друг на друга. И точно, известны опытные факты, свидетельствующие о том, что интерференционная картинка получается отнюдь не в результате взаимодействия фотонов друг с другом. Были специально поставлены опыты при сверхслабых световых потоках: фотоны летели, практически, поодиночке – и, лишь после длительной экспозиции, на результирующей фотопластинке можно было что-то разглядеть (описание этих опытов см., например, в [Т1]). Выяснилось: картинки, полученные при обычных световых потоках и малых временах экспозиции, идентичны картинкам, полученным при сверхслабых световых потоках и достаточно длительных экспозициях. Ну, и чего? Помогли эти результаты ортодоксам понять, что в концепции летящих фотонов – что-то очень не так? Да ничуть. Наоборот, вот куда понесло иных теоретиков: «Раз уж полосы получаются даже тогда, когда фотоны летят поодиночке, то имеем право предположить, что каждый фотон рисует сразу всю картинку, только очень слабенькую. А с каждым новым фотоном вся эта картинка усиливается и усиливается!» И до сих пор пропагандируют эту чушь – о том, что фотон может размазываться на всю фотопластинку! А ведь точно известно, что фотопластинки состоят из микроскопических зёрнышек. И точно известно: чтобы это фотографическое зёрнышко сработало, в нём должна произойти фотохимическая реакция – а она происходит при приобретении необходимой энергии возбуждения, т.е. при поглощении фотона целиком! Неужели отсюда не ясно, что каждый фотон попадает