Маркетинг (Инновационный менеджмент) | страница 12
Подведем итоги. Дисконт-функцию можно разложить на две составляющие общую для экономики в целом и специфическую для данной отрасли или данного инвестиционного проекта. Если дисконт-функция - константа для разных отраслей, товаров и проектов, то эта константа называется дисконт-фактором, или просто дисконтом..
Общая дисконт-функция определяется совместным действием реальной процентной ставки и индекса инфляции. Реальная процентная ставка описывает "нормальный" рост экономики (т.е. без учета инфляции). В стабильной ситуации (при "долговременном конкурентном равновесии"), как известно из экономической теории, доходность от вложения средств в различные отрасли, в частности, в банковские депозиты, должна быть одинакова. В современных условиях эта величина (норма рентабельности) равна примерно 6-12% (см., например, [7]). Примем для определенности максимальное значение, равное 12%. Другими словами, 1 рубль через год превращается в 1,12 руб., а потому 1 рубль через год соответствует 1/1,12 = 0,89 руб. сейчас - это и есть максимально возможное значение дисконта.
Обозначим дисконт буквой С. Как установлено выше, С - число между 0 и 1, точнее, максимально возможное значение дисконта равно 0,89. В общем случае, если q - банковский процент (плата за депозит), т.е. вложив в начале года в банк 1 руб., в конце года получим (1+ q) руб., то дисконт определяется по формуле
С = 1 / (1+ q) (1).
Отметим, что при таком подходе полагают, что банковские проценты платы за депозит одинаковы во всех банках. Более правильно было бы считать q, а потому и С, нечисловыми величинами, а именно, интервалами [q1 , q2] и [С1 , С2] соответственно. При этом связь между интервалами определяется формулой (1):
С1 = 1 / (1+ q2) , С2 = 1 / (1+ q1) .
Следовательно, выводы, полученные с помощью рассматриваемых величин, должны быть исследованы на устойчивость (в инженерной среде принят термин "чувствительность") по отношению к отклонениям этих величин в пределах заданных интервалов.
Обозначим дисконт-функцию C(t) как функцию времени t. Тогда при постоянстве дисконт-фактора во времени дисконт-фунция имеет вид
C(t) = С^t, (2)
т.е. С возводится в степень t. Согласно формуле (2) через 2 года 1 руб. превращается в 1,12 х 1,12 = 1,2544, через 3 - в 1,4049, следовательно, 1 руб., полученный через 2 года, соответствует 79,72 копейки сейчас, а 1 руб., обещанный через 3 года, соответствует 0,71 руб. сейчас. Другими словами, С(2) = 0.80 (с точностью до двух знаков после запятой), а С(3) = 0,71.