Первые три минуты | страница 80
Все это можно рассмотреть значительно более точно. Чуть позднее того момента, как Вселенная стала прозрачной для нейтрино, электроны и позитроны начали аннигилировать, нагревая фотоны, но не нейтрино. Вследствие этого нынешняя температура нейтрино должна быть несколько меньше температуры фотонов. Довольно легко подсчитать, что температура нейтрино меньше температуры фотонов на множитель, равный кубическому корню из 4/11, или на 71,38 процента; следовательно, нейтрино и антинейтрино вносят вклад в энергию Вселенной, равный 45,42 процента энергии фотонов (см. математическое дополнение 6). Хотя я и не говорил об этом прямо, когда обсуждал промежутки времени космического расширения, я учитывал эту добавочную плотность энергии нейтрино.
Наиболее драматическим из возможных подтверждений стандартной модели ранней Вселенной было бы детектирование этого фона нейтрино. Мы имеем четкое предсказание о его температуре; она составляет 71,38 процента температуры фотонов, т. е. около 2 К. Единственной реальной теоретической неопределенностью в количестве и энергетическом распределении нейтрино остается вопрос, так ли мала плотность лептонного числа, как мы предположили. (Напомним, что лептонное число есть число нейтрино и других лептонов минус число антинейтрино и других антилептонов.) Если плотность лептонного числа так же мала, как и плотность барионного числа, тогда число нейтрино должно равняться числу антинейтрино с точностью до одной части на миллиард. В то же время, если плотность лептонного числа сравнима с плотностью числа фотонов, тогда должно быть «вырождение», т. е. заметный избыток нейтрино (или антинейтрино) и недостаток антинейтрино (или нейтрино). Такое вырождение должно было повлиять на сдвиг нейтрон-протонного баланса в первые три минуты и, следовательно, изменило бы количество космологически образованных гелия и дейтерия. Наблюдение фона космических нейтрино и антинейтрино с температурой 2 К немедленно разрешило бы вопрос, имеет ли Вселенная большое лептонное число, и, что значительно более важно, доказало бы, что стандартная модель ранней Вселенной действительно правильна.
Увы, нейтрино так слабо взаимодействуют с обычным веществом, что никто еще не смог предложить какой-либо способ наблюдения двухградусного фона космических нейтрино. Это поистине мучительная проблема: на каждую ядерную частицу имеется около миллиарда нейтрино и антинейтрино и до сих пор никто не знает, как их обнаружить! Возможно, когда-нибудь кто-нибудь сможет.