Первые три минуты | страница 45
Например, непрозрачное тело при обычной «комнатной» температуре 300 К (27 °C) будет испускать излучение черного тела со средней длиной волны, равной 0,29 см, деленным на 300, т. е. около одной тысячной сантиметра. Это лежит в области инфракрасного излучения, и длина волны слишком велика, чтобы наши глаза могли его видеть. В то же время, поверхность Солнца имеет температуру около 5 800 К и, следовательно, испускаемый свет имеет максимум в спектре при длине волны, равной 0,29 см, деленным на 5 800, т. е. примерно пять стотысячных долей сантиметра (5 × 10>-5 см) или 5 000 ангстрем. (Один ангстрем равен одной стомиллионной (10>-8) сантиметра.) Как уже отмечалось, это находится в середине той области длин волн, которую в процессе эволюции приспособились видеть наши глаза и которую мы называем видимой областью. То, что эти длины волн столь малы, объясняет тот факт, что лишь в начале девятнадцатого века была обнаружена волновая природа света: ведь только тогда, когда мы изучаем свет, прошедший через очень маленькие отверстия, мы можем заметить явления, характерные для распространения волн, такие, как дифракция.
Мы видели также, что уменьшение плотности энергии излучения при больших длинах волн связано с трудностью заключить излучение в любой объем, размеры которого меньше длины волны. В самом деле, среднее расстояние между фотонами в излучении черного тела, грубо говоря, равно средней длине волны фотона. Но мы видели, что средняя длина волны обратно пропорциональна температуре, следовательно, среднее расстояние между фотонами также обратно пропорционально температуре. Число предметов любого сорта в заданном объеме обратно пропорционально кубу среднего расстояния между ними, поэтому при излучении черного тела выполняется правило: число фотонов в данном объеме пропорционально кубу температуры.
Мы можем теперь собрать всю эту информацию воедино, чтобы сделать ряд выводов о количестве энергии в излучении черного тела. Количество энергии в одном литре, или «плотность энергии», есть просто число фотонов в одном литре, умноженное на среднюю энергию одного фотона. Но мы видели, что число фотонов в одном литре пропорционально кубу температуры, в то время как средняя энергия фотона просто пропорциональна температуре. Отсюда, количество энергии в одном литре излучения черного тела пропорционально кубу температуры, умноженному на температуру, или, другими словами, четвертой степени температуры. Выражая это количественно, находим, что плотность энергии излучения черного тела равна 4,72 эВ на литр при температуре 1 К, 47 200 эВ на литр при температуре 10 К и так далее. (Это правило известно как закон Стефана-Больцмана.) Если микроволновой шум, обнаруженный Пензиасом и Вилсоном, действительно является излучением черного тела с температурой 3 К, то плотность энергии его должна быть равной 4,72 эВ на литр, умноженным на три в четвертой степени, т. е около 380 эВ на литр. Когда температура была в тысячу раз больше, плотность энергии была в миллион миллионов (10