Первые три минуты | страница 19
Чтобы увидеть это, рассмотрим три типичные галактики А, В и С, расположенные вдоль прямой линии (рис. 1). Предположим, что расстояние между А и В такое же, как и между В и С. Какова бы ни была скорость В по отношению к А, Космологический Принцип требует, чтобы С имела ту же скорость по отношению к В. Но заметьте при этом, что С, которая вдвое дальше от А, чем B, движется вдвое быстрее по отношению к А, чем по отношению к В. Мы можем еще добавить галактик в нашу цепочку, но результат будет все тот же: скорость удаления любой галактики по отношению к любой другой галактике пропорциональна расстоянию между ними.
Рис. 1. Однородность и закон Хаббла.
Показана цепочка равноудаленных галактик Z, А, В, С…, причем длина и направление сплошных стрелок соответствуют скорости, измеренной по отношению к А, или В, или С. Принцип однородности требует, чтобы скорость С, наблюдаемая из В, равнялась скорости В, наблюдаемой из А; сложение этих двух скоростей дает скорость С, наблюдаемую из А, которая отмечена вдвое более длинной стрелкой. Продолжая рассуждать подобным образом, мы можем заполнить все поле скоростей, указанное на рисунке. Как видно, скорости подчиняются закону Хаббла: скорость любой галактики, которая видна из любой другой галактики, пропорциональна расстоянию между ними. Это единственное распределение скоростей, совместимое с принципом однородности.
Как часто случается в науке, этот аргумент можно использовать как в ту, так и в другую сторону. Хаббл, наблюдая пропорциональность между расстояниями до галактик и их скоростями удаления от нас, неявно подтвердил справедливость Космологического Принципа. Это весьма удовлетворительно с философской точки зрения: действительно, почему какая-то часть Вселенной или какое-то направление в ней должны отличаться от любых других? Кроме того, укрепляется наша уверенность в том, что астрономы видят на самом деле достаточно заметную часть Вселенной, а не местный маленький водоворот в грандиозном космическом Мальстреме[9]. В то же время мы можем на априорных основаниях принять справедливость Космологического Принципа и затем вывести соотношение пропорциональности между расстоянием и скоростью, как это сделано в предыдущем абзаце. Действуя таким образом, мы с помощью относительно простого измерения доплеровских сдвигов получаем возможность судить о расстоянии до очень удаленных объектов по их скорости.
Космологический Принцип подтверждается и наблюдениями другого рода, помимо измерений доплеровских сдвигов. Если сделать надлежащую скидку на те искажения, которые связаны с нашей Галактикой и многочисленными близлежащими скоплениями галактик в созвездии Девы, то Вселенная оказывается существенно изотропной; это значит, что она выглядит одинаково во всех направлениях. (Это еще более убедительно подтверждается микроволновым фоном излучения, речь о котором пойдет в следующей главе). Но уже со времен Коперника мы научились остерегаться предположений о том, что имеется что-то особенное в местоположении человечества во Вселенной. Следовательно, если Вселенная изотропна вокруг нас, она должна быть изотропна и вокруг любой типичной галактики. Однако любая точка во Вселенной может быть перенесена в любую другую точку последовательностью вращений вокруг фиксированных центров (рис. 2), поэтому, если Вселенная изотропна вокруг любой точки, то с необходимостью она и однородна.