Состояние постмодерна | страница 56
Мандельброт относит все эти исследования к влиянию текста Перрена, который мы уже комментировали, но протягивает вектор действия в неожиданном направлении. «Функции, чьи производные надо вычислить — пишет он, — самые простые, легко поддающиеся расчету, но они являются исключениями. Говоря языком геометрии, кривые, которые не имеют касательной являются прямой линией, а такие правильные кривые, как круг, представляют собой интересные, но очень частные случаи»[199].
Такая констатация — не просто курьез, имеющий абстрактный интерес; она подходит к большинству экспериментальных данных: контуры клочка пены соленой мыльной воды представляют такие фрактальные разбиения (infractuosites), что невозможно на глаз определить касательную ни к одной точке ее поверхности. Здесь дается модель броуновского движения, чья особенность, как известно, заключается в том, что вектор перемещения частицы из некоей точки является изотропным, т. е. все возможные направления равновероятны.
Но мы находим туже проблему в обычных масштабах, когда, к примеру, хотим точно измерить длину берега Бретани, поверхность кратеров Луны, распределение звездной материи или «прорывы» шума в телефонной связи, турбулентность вообще, формы облаков — короче, большинство контуров и распределений вещей, которые не были упорядочены человеческой рукой.
Мальдерброт показывает, что фигура, представленная такого рода данными, объединяет их в кривые, соответствующие непрерывным непроизводным функциям. Упрощенная их модель — кривая фон Коха;[200] она имеет внутреннюю гомотетию; можно строго доказать, что гомотетическое измерение, на котором она строится, представляет собой не целое, но log4/log3. Мы в праве сказать, что такая кривая располагается в пространстве, «число измерений» которого между 1 и 2, и, таким образом, она есть что-то интуитивно промежуточное между линией и поверхностью. Именно потому, что их релевантное гомотетии измерение является дробью, Мандельброт называет эти объекты фрактальными.
Работы Рене Тома[201] имеют сходное направление. В них также непосредственно ставится вопрос о понятии устойчивой системы, которая является предпосылкой лапласовского и даже вероятностного детерминизма.
Том учредил математический язык, позволяющий описать, как прерывности могут формальным образом появляться вдетерминированных явлениях и давать место неожиданным формам: этот язык создал теорию, называемую теорией катастроф.